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Abstract Much of the early visual system is devoted to sifting the visual scene for the few bits of

behaviorally relevant information. In the visual cortex of mammals, a hierarchical system of brain

areas leads eventually to the selective encoding of important features, like faces and objects. Here,

we report that a similar process occurs in the other major visual pathway, the superior colliculus.

We investigate the visual response properties of collicular neurons in the awake mouse with large-

scale electrophysiology. Compared to the superficial collicular layers, neuronal responses in the

deeper layers become more selective for behaviorally relevant stimuli; more invariant to location of

stimuli in the visual field; and more suppressed by repeated occurrence of a stimulus in the same

location. The memory of familiar stimuli persists in complete absence of the visual cortex. Models

of these neural computations lead to specific predictions for neural circuitry in the superior

colliculus.

Introduction
Whereas the human eye takes in about one gigabit of raw visual information every second, we end

up using only a few tens of bits to guide our behavior (Pitkow and Meister, 2014). Of course those

bits are carefully selected from the scene, and which specific bits get used depends entirely on the

context and goals. All this happens in a processing time of about a tenth of a second

(Stanford et al., 2010; Thorpe et al., 1996). How the visual brain sifts the onslaught of visual data

for the few behaviorally relevant nuggets has been an enduring mystery. Much research in this area

has focused on the primate visual system, and specifically the phenomena of invariant object recog-

nition. For example, certain neurons in the inferotemporal cortex respond selectively to a specific

individual’s face regardless of its position or view angle (Freiwald and Tsao, 2010), or to the con-

cept of a specific celebrity regardless of how that concept arises (Quiroga et al., 2005). An impres-

sive body of theory and computational modeling has been developed to explain how this sifting for

important bits from the retinal output may be implemented (DiCarlo et al., 2012; Serre et al.,

2007). However, empirical evidence regarding the actual biological microcircuits has been difficult

to obtain.

In rodent vision, a prominent example of visual sifting is the defensive reaction of a mouse to an

approaching aerial predator (De Franceschi et al., 2016; Yilmaz and Meister, 2013). Freezing or

escape can be triggered reliably by an overhead display of an expanding dark disk. Effectively, the

alarm circuits in the mouse’s visual system extract from the overall visual display just one or two bits

of information needed to initiate action. To function properly, such an alarm system must be highly

selective for the trigger feature. Indeed the mouse does not respond to expanding white disks, or to

dimming dark disks, or to contracting white disks (Yilmaz and Meister, 2013). All these innocuous

stimuli share some low-level features with the expanding dark disk, but not the overall configuration.

Furthermore, the behavior is invariant to irrelevant features. For example, a mouse will freeze in

response to looming stimuli presented anywhere in the upper visual field. It is unknown how this
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invariance to location arises, and how it can coexist with high selectivity for the local stimulus

features.

Recent research on rodents suggests that the visual drive for these defensive behaviors arises not

in the thalamo-cortical pathway but in the superior colliculus (Evans et al., 2018; Shang et al.,

2018). The superior colliculus (SC) is an evolutionarily ancient midbrain structure that mammals share

with birds, fish, and amphibians (Basso and May, 2017; Cang et al., 2018). The superficial layers

receive inputs from the retina and in mammals also from the visual cortex, organized in a precise ret-

inotopic map (Seabrook et al., 2017). Neurons there project to the deep layers of the SC as well as

other brain areas including the lateral geniculate nucleus and pulvinar. The deep layers also receive

signals from other sensory modalities including hearing and touch. Neurons in the deep SC repre-

sent pre-motor signals and project broadly to many brain areas in both ascending and descending

pathways. Generally speaking neural processing in the SC identifies salient points in the environment

and coordinates the orienting of the animal toward or away from such locations. In the primate

brain, this has been studied extensively for the special case of eye movements (Kowler, 2011), but

the primate SC also helps control head, arm, and body movements. Furthermore, the SC contributes

to a type of ‘internal’ orienting, namely when we direct our attention to a specific part of the scene

without overt eye movements (Krauzlis et al., 2013).

To better understand how visual sifting proceeds in the SC we recorded spike trains simulta-

neously from neurons throughout all layers of this structure in the awake mouse. The set of visual dis-

plays included visual threats that reliably elicit defensive reactions, and closely related stimuli that do

not. We report on three kinds of neural computations that separate behaviorally relevant from irrele-

vant stimuli, and we trace their emergence from the superficial to the deep layers of the SC: (1) an

increasing selectivity for the threat stimulus; (2) an increasing invariance to location of that stimulus;

and (3) the suppression of neural responses to a familiar stimulus. In particular, this memory of famil-

iar stimuli is stimulus-specific, lasts for a behaviorally relevant timescale, and does not require input

from the visual cortex. To explain these computations we consider several circuit models, some of

which can be eliminated based on the population recordings. These results suggest how circuits of

the SC can effectively distill the ecologically relevant information that guides behavior.

Results

Emergence of new response properties from superficial to deep layers
To track visual computations in the mouse SC, we recorded from hundreds of neurons simulta-

neously in all layers of the structure using multi-electrode silicon prongs (Du et al., 2011). The animal

was head-fixed, awake, and moving on a running wheel, but not trained to perform any specific task,

so we could best observe the autonomous visual functions of the SC. The recording electrodes were

aimed at the dorso-medial portion of the SC, which processes stimuli in the upper visual field. Over

the course of several hours, we presented a battery of visual displays, ranging from abstract stimuli

like flickering checkerboards to those with ecological significance, like overhead looming disks.

In analyzing neuronal responses to these stimuli, we observed a systematic progression from the

superficial layers that receive retinal input to the deep layers of the SC. To illustrate the dramatic

change in how stimuli are represented, Figure 1 compares recordings from two sample neurons,

one in the superficial SC and the other in the deep SC.

The superficial neuron responded well to many different kinds of displays, such as an expanding

dark disk (the classic ‘looming’ stimulus), a contracting white disk, a moving disk, or a dimming disk.

By contrast, the deep neuron was quite selective for the looming stimulus (Figure 1C). Second, the

superficial neuron had a small and precisely circumscribed receptive field roughly 10˚ in diameter. It

responded only when the stimulus invaded that region. By contrast, the deep neuron responded

strongly to any looming stimulus presented over a wide region that encompasses much of the visual

hemifield (Figure 1D). Third, the superficial neuron responded reliably to repeated presentation of

the identical stimulus. By contrast, the deep neuron fired only on the first presentation and failed to

respond entirely to the subsequent ones (Figure 1C, top row).

The three characteristics found in the deep SC neuron’s responses – selectivity for the looming

feature, spatial invariance, and habituation to familiar stimuli – are all distinct from the signals trans-

mitted by the retina. For example, an ‘approach-sensitive’ retinal ganglion cell (RGC) has been
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Figure 1. The emergence of selectivity, invariance, and stimulus-specific habituation along the depth of SC. (A) Left: Experimental setup. Silicon neural

probes with 128 channels were implanted into the SC of a headfixed mouse viewing visual stimuli. The mouse was free to run on a circular treadmill.

Middle: Diagram of a coronal section showing the anatomically defined layers of the SC (adapted from Paxinos and Franklin, 2001). sSC: superficial

SC; dSC: deep SC. Right: Corresponding histological section recovered after neural recording, showing tracks of two electrode prongs. Magenta: DiI;

white: anti-Calb1. (B) Extracellular spike waveforms of sample sSC (red) and dSC (blue) neurons recorded simultaneously on the silicon probe. Dots

indicate the location of recording sites. Dashed line indicates boundary along the electrode array between sSC and dSC (see Materials and methods

Figure 1 continued on next page
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reported in the mouse retina (Münch et al., 2009), but later studies have found that it is actually the

Off-transient alpha cell (Roska and Meister, 2014) that responds to many other Off-type stimuli in

addition to the looming stimulus (Krieger et al., 2017). RGCs also have local receptive fields ranging

up to 10˚ at most (Krieger et al., 2017), which can be readily mapped with white noise stimuli such

as flickering checkerboards or bars (Zhang et al., 2012). Finally, although RGCs show complex adap-

tation properties, the timescale of adaptation is typically on the order of 0.1 -10 (Baccus and Meis-

ter, 2002; Wark et al., 2009), whereas the habituation we find in the deep SC lasts on the order of

minutes. In the following sections, we elaborate on these response properties and how they may

arise in the circuitry of the SC.

Selectivity for looming stimuli
In an attempt to measure the visual receptive fields of all the recorded neurons, we applied a flicker-

ing checkerboard stimulus and then computed the spike-triggered average (STA) stimulus (Chi-

chilnisky, 2001). This is a common procedure that works well for retinal ganglion cells and neurons

in the early stages of visual cortex (Meister et al., 1994; Niell and Stryker, 2008). In the superficial

SC, the STA analysis yielded linear receptive fields that resembled those of retinal ganglion cells

(Figure 2A–B). They were sharply defined in space, with the smallest only ~5˚ across. They frequently

showed an antagonistic and delayed surround, and some displayed orientation- and direction-selec-

tivity (Feinberg and Meister, 2015; Inayat et al., 2015). The great majority of these neurons (~90%)

were Off cells based on the shape of the STA. By contrast, neurons in the deep SC did not produce

sustained responses to the flickering checkerboard (Figure 2A), and thus contained no structure in

the STA (Figure 2B). Nevertheless, these same deep SC neurons did respond strongly to certain fig-

ural stimuli, like the expanding dark disk (Figure 2A,C–D).

Among the various figural stimuli we tested, many neurons showed some selective tuning

(Figure 1C, Figure 2D, Figure 2—figure supplement 1). We focus here on the comparison of an

expanding dark disk with a contracting white disk (Figure 2D). These two stimuli are closely related

in terms of local features: both contain an advancing dark edge. But the ecological interpretations

are quite different: one indicates an approaching dark object and the other a receding white object.

Freely moving mice take an evasive action to an expanding dark disk, but are unimpressed by a con-

tracting white disk (Yilmaz and Meister, 2013). Compared to superficial SC, neurons in the deep SC

indeed became more selective for the expanding dark disk (Figure 2D). This can be seen as sifting

what is likely the most behaviorally relevant signal in the upper visual field from other distracting

stimuli.

Invariance to stimulus position
Although superficial SC neurons often had sharp receptive fields just 5-10˚ in diameter, deep SC neu-

rons generally responded to stimuli over a large part of the visual field. We probed this tendency

with expanding dark disks presented at many different locations, as these were the most effective

stimuli in the deep SC. With increasing depth in the SC, neurons showed larger receptive fields,

growing by a factor of 6 in area or more (Figure 3A–B). Note that the resolution of the receptive

field measurement with expanding dark disks is ~15˚, and as a result these receptive fields are larger

than those measured by the flickering checkerboard (Figure 2B).

Figure 1 continued

and Figure 1—figure supplement 1). (C) Response of neurons from (B) to visual stimuli. The sSC neuron (middle) responds to many types of figural

stimuli (left icons: expanding black, expanding white, contracting black, contracting white, dimming, and moving black disk), whereas the dSC neuron

(right) is highly selective to the expanding black disk. The sSC neuron responds robustly to every trial, whereas the dSC neuron responds primarily to

the first presentation. (D) In an experiment in which looming stimuli appear from many locations (left), the sSC neuron from (B) (middle) is driven only by

stimuli that cross its receptive field, whereas the dSC neuron from (B) (right) responds to stimuli placed at many more locations. White: final size of

looming stimuli that elicited significant response from the cell; red: one standard deviation outline of spatial receptive field recovered by spike-

triggered average method.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Histological and electrophysiological identification of SC layers.
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Despite this wide spatial range, deep SC neurons responded with a remarkably short latency to

looming stimuli at any location (Figure 3A). By the time such a neuron starts firing, the expanding

dark disk has only covered a few retinal ganglion cells. In contrast, for superficial neurons the latency

varied depending on the location of the expanding disk stimulus and it often exceeded the latency

of deep SC neurons. (Figure 3A). Figure 3C plots this variation in the latencies across the SC depth.

One possible interpretation is that a widefield neuron in the deep SC pools over many local neurons

in the superficial SC, such that it becomes sensitive with the same latency at every point in its recep-

tive field. Indeed, such an interlaminar pathway has been demonstrated previously in slice prepara-

tions (Lee et al., 1997; Helms et al., 2004). We consider this possibility more thoroughly below.

In any case, it appears that certain widefield neurons in the deep SC have solved the problem of

threat detection to a large degree: they signal the looming stimulus rapidly and sensitively without

false alarms from stimuli that share some low-level features but not the behavioral significance.

Habituation to familiar stimuli
Neurons in the superficial layers generally produced a spike burst of comparable firing rate with

every repeat of the stimulus (Figure 1C). By contrast, some neurons in the deep layers responded

with a sharp burst only to the first presentation; the response to all subsequent repeats was sup-

pressed (Figure 4A). The degree of habituation to repeated stimuli was greater in the deeper SC

compared to the superficial SC (Figure 4B).

The onset of this habituation is immediate and already affects the response ~1 s later (Figure 1C,

Figure 4A). The suppression then lasts for minutes: many deep SC neurons showed less than 50%

recovery even after ~120 s (Figure 4D). While we have not measured the exact time course of

Figure 2. Selectivity to looming stimulus. (A) Response of sample sSC (middle) and dSC (right) neurons to looming stimulus (top) and flickering

checkerboard (bottom). sSC neuron is driven strongly by both, but dSC neuron is almost completely silent to the checkerboard stimulus. (B) Spatial

(top) and temporal (bottom) receptive fields of the sSC (left) and dSC (right) neurons in (A) based on spike-triggered average analysis. In each subpanel,

left: spatial center; right: spatial surround; bottom blue: temporal center; bottom red: temporal surround. In the temporal RF panels, the vertical line

represents the time of the spike. (C) Population summary of selectivity to looming stimulus over checkerboard stimulus along the depth of SC.

Horizontal dashed line indicates the boundary between sSC and dSC. Vertical dashed line separates neurons with high selectivity index (>0.75) from

others. The p-value (two-sample Kolmogorov-Smirnov test) indicates that the distributions of sSC and dSC neurons differ significantly. (D) Same as (C),

comparing responses to looming stimulus and contracting white disk. Selectivity index is defined as ðrL � rOÞ=ðrL þ rOÞ where rL refers to response to

looming stimulus and rO refers to response to checkerboard stimulus (C) or contracting white disk (D).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Looming selectivity over other figural stimuli.
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recovery, we found that the suppression was not permanent. In general, neurons recovered the full

sensitivity to the first presentation when probed again about an hour later (Figure 4—figure supple-

ment 1). Furthermore, the burst of spikes was not driven simply by a change in locomotor output or

pupil size as a secondary consequence of the visual threat (Figure 4—figure supplement 2).

Remarkably, this habituation was strictly specific to the stimulus that caused the response. As

reported above, widefield neurons in the deep SC can be triggered by looming disks at many differ-

ent locations (Figure 1C, Figure 3A). Figure 4C shows the response of a single neuron to a looming

stimulus whose location was chosen randomly on every trial. By comparing the sequence of

responses at one location to that at another one can test whether the habituation transfers across

space. As shown in the bottom left panel of Figure 4C,a stimulus at one location did not suppress

the subsequent response of the same neuron to a stimulus at another location, even separated by as

little as 15˚. One interpretation is that the habituation takes place in local circuits spanning ~15˚ in

width before their output gets pooled by the widefield neuron.

Given that the memory for familiar stimuli can last 2 min or longer, we considered whether the

hippocampus or the neocortex play a role in storing this information, perhaps by modulating the

gain of collicular signals through the extensive projections from visual cortex (Zhao et al., 2014).

Thus, we repeated the experiments in a mutant mouse that lacks all the dorsal forebrain, including

the hippocampus and most of the neocortex (Kim et al., 2010; Figure 4—figure supplement 3).

Intriguingly, the mutant also showed long-lasting suppression of repeated stimuli in deep neurons of

the SC (Figure 4E), to a degree that matched the suppression seen in the normal mouse (Figure 4C

bottom right and Figure 4D). This is consistent with a local mechanism for habituation within the SC.

The preceding analyses of single-neuron responses suggest that the neural population deep in

the SC selectively represents those bits of information that may be of immediate relevance to defen-

sive reactions, while other aspects of the visual display get discarded. To test this directly, we

Figure 3. Invariance to stimulus position. (A) Raster plot of sample sSC (left) and dSC (right) neurons recorded simultaneously during an experiment in

which looming stimuli appear randomly in one of 25 locations (small black dots in cartoon) in each trial. These locations are ~15˚apart. The dSC neuron

responds to many more locations than the sSC neuron and with an invariant latency. Bottom: The response amplitude at each location is reported by

the brightness of the circle. X indicates a location that received no stimulus. (B) Population summary of receptive field size estimated from the

experiment in (A). Vertical dashed line is at 60˚. (C) Population summary of variability in the timing of the first spike from the experiment in (A). Vertical

dashed line is at 75 ms. In both (B) and (C), the horizontal dashed line separates sSC and dSC. The red and blue circles denote the sSC and dSC

neurons from (A). The p-values (two-sample Kolmogorov-Smirnov test) indicate that the distributions of sSC and dSC neurons differ significantly.
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applied a linear decoder to the population vector from neurons in superficial and deep SC. From sin-

gle stimulus trials, the decoder easily read out the precise location of a visual stimulus from the pop-

ulation in superficial SC, but much less so from neurons in deep SC (Figure 5, left). By contrast, the

deep SC represented explicitly whether a stimulus appeared at a novel or a familiar location,

whereas that information was barely available in the superficial SC (Figure 5, right). Of course a

decoder with access to the entire history of responses could decode stimulus novelty also from the

superficial SC. By contrast, in the deep SC that information is available on individual trials. In the

next section, we explore how the information about stimulus history may be stored by the collicular

circuit.

A working model for circuit mechanisms of visual sifting
The microcircuitry of the SC is still poorly understood, at least compared to that of the retina. One

can distinguish about 5 to 10 neuronal types based on morphology and gene expression

Figure 4. Stimulus-specific habituation. (A) Response of a sample dSC neuron to a series of 10 looming stimuli. The first and the 10th trials are shaded

in blue. Note that this neuron has a maintained baseline firing rate, which is unchanged by the stimulus on all but the first trial. (B) Population summary

of habituation to repeated looming stimulus. The habituation index is defined as 1� r1=r10 where ri refers to the number of spikes fired in in i-th trial

after subtracting background activity. The horizontal dashed line separates sSC and dSC. The vertical dashed line is at 0.75. The blue circle is the

sample dSC neuron from (A). The p-value (two-sample Kolmogorov-Smirnov test) indicates that the distributions of sSC and dSC differ significantly from

each other. (C) Response of a sample dSC neuron to ~100 presentation of looming stimuli delivered in random sequence. Each subpanel represents

response to stimuli at one of the 25 locations. Bottom left: two of the response traces from above. Even after the neuron has habituated to stimuli at

one location (magenta), it responds strongly to the first stimulus at another location (blue). Bottom right: response of all dSC neurons in this recording,

normalized by response to first trial of the magenta trace. Data points are medians and error bars range from 25th to 75th percentiles. (D) Summary of

time to recover from habituation for a group of simultaneously recorded sSC and dSC neurons. Even after ~120 s, dSC neurons do not recover beyond

50% of the initial response. Data points are medians and error bars range from 25th to 75th percentiles. (E) Sample sSC (top right) and dSC (middle

right) neurons recorded in a mutant mouse that does not develop the neocortex or the hippocampus (left). The dSC neuron in the mutant mouse also

shows habituation. Bottom: population response of dSC neurons to 10 presentations of the looming stimulus, normalized by the response to the first

presentation. Data points are medians and error bars range from 25th to 75th percentiles.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Suppression of a familiar stimulus is not permanent.

Figure supplement 2. Enhanced response to first stimulus is not a simple consequence of motor activity.

Figure supplement 3. A mutant mouse that lacks the neocortex and the hippocampus.
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(Byun et al., 2016; Gale and Murphy, 2014), but their synaptic connectivity is largely unknown. Fur-

thermore, the SC interacts through long-range connections with other brain regions, notably the

visual cortex (Seabrook et al., 2017). Nevertheless, it is useful to consider what circuit mechanisms

may produce the observed visual responses of SC neurons. The functional evidence we have gath-

ered here makes some potential explanations unlikely, and supports others as a guide in future stud-

ies of synaptic connectivity. Here, we focus on explaining three aspects of visual processing

encountered in some deep SC neurons: the selectivity for looming stimuli, the invariance to spatial

location, and the long-lasting stimulus-specific habituation. None of these phenomena occur in

responses of retinal ganglion cells, and thus they must arise from post-retinal circuitry.

One circuit model that accounts for all the observed effects is shown in Figure 6A (‘the working

model’). It starts with input signals from retinal ganglion cells. Those are combined to produce neu-

rons selective for a local looming stimulus. The outputs of many such local looming detectors are

pooled to produce neurons with widefield sensitivity and position invariance. Finally, the input syn-

apses to those widefield neurons undergo a short-term synaptic depression that accounts for the

stimulus-selective habituation.

To simulate the function of this circuit we modeled each of the neurons as a Linear-Nonlinear ele-

ment (Chichilnisky, 2001), and the synapses according to a widely used formalism for short-term

plasticity (Tsodyks et al., 1998). This model correctly recapitulates the preference for looming over

other stimuli (Figure 6E); the position invariance; and the habituation to familiar stimuli (Figure 6F).

It even accounts for detailed dynamics of the looming response in deep neurons, such as the short

latency (Figure 3A) and the rapid quenching of the response caused by synaptic depression

(Figure 1C, Figure 4A).

While a successful circuit model seems promising, one learns something useful only from compar-

ing different explanations. Here, we consider several alternative microcircuits to account for the

looming selectivity and the stimulus-selective habituation.

The working model (Figure 6A) builds on local looming-selective neurons. We encountered multi-

ple cells in the superficial SC that match this profile: a local receptive field, looming selectivity, and

little habituation (Figure 6—figure supplement 1). In the working model, this selectivity is achieved

by combining signals from retinal ganglion cells (RGCs) with different dynamics: excitation from a

fast and transient Off-cell forms the receptive field center, and inhibition from slow and sustained

Off-cells forms the surround. Since RGCs are excitatory, the inhibition requires interneurons in the
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Figure 5. Population decoding of distinct stimulus features. Linear decoders were trained with simultaneously recorded sSC and dSC neurons to

predict location (left) and novelty (i.e. whether the stimulus has appeared at a location for the first time) (right) of stimuli in the experiment described in

Figure 3. Dashed line: chance performance; error bars: one standard deviation across different subsamples of cells.

Lee et al. eLife 2020;9:e50678. DOI: https://doi.org/10.7554/eLife.50678 8 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.50678


...

sSC

Local looming

detector

Adaptive

synapses

Global looming

detector

Slow

Fast

Off-type inputs from retina

Figure 6. Model of selectivity, invariance, and stimulus-specific habituation. (A) The ‘working model’ of how

selectivity, invariance, and habituation arise in the dSC. Looming selectivity is generated by combining fast and

slow Off-type retinal inputs (green and pink) in the local looming detector (purple) in sSC. Inset on right shows

spatial layout of these inputs. Invariance arises from pooling these local looming detectors to a single global

looming detector (cyan) in the deep layers. The stimulus-specific habituation is achieved by synapses that undergo

activity-dependent short-term depression (red downward arrows). Solid circles: excitation; open circles: inhibition.

Figure 6 continued on next page
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SC, and the slow dynamics of the surround may well result from filtering by those interneurons. In

either case, the concentric organization of fast excitation and slow inhibition produces selectivity for

looming over contracting white or moving or dimming stimuli (Figure 6E).

As an alternative explanation, could the looming selectivity already originate in RGCs? As we

noted previously, the ‘approach-sensitive’ Off-cell that has been previously reported (Münch et al.,

2009) is now known to correspond to the Off-transient alpha cell (Roska and Meister, 2014) which

– while sensitive to looming stimuli – responds equally well to dimming and flashing spots

(Krieger et al., 2017). Therefore, these RGCs do not qualify as the local looming detectors.

Another possibility is that looming selectivity results from a radial organization of direction-selec-

tive (DS) neurons, each of which reports a segment of the advancing dark edge (Figure 6B). Suppos-

ing those DS inputs come from the retina, the only candidates are the On-Off DS RGCs (Sanes and

Masland, 2015), which would be equally sensitive to On edges. Thus, the looming detectors in the

SC should respond to an expanding white disk as well, unlike what we observed (Figure 1C). If, on

the other hand, the DS signals are generated de novo in the SC, one would expect to find such inter-

neurons with all possible preferred directions. Instead, DS neurons in a given region of the superficial

SC have a strong bias for just one or two preferred directions (de Malmazet et al., 2018). In sum-

mary, both of the considered alternative microcircuits for looming selectivity seem unlikely given the

available evidence.

In the working model (Figure 6A), the stimulus-selective habituation is produced by activity-

dependent depression of the synapses that convey the local looming signals to the widefield neuron.

A plausible alternative mechanism would involve long-lasting inhibition of the looming detector from

a neuron triggered by that same local stimulus (Figure 6C). This neuron would need to exhibit a sus-

tained activity following a single stimulus. In our database of collicular recordings, we never encoun-

tered a neuron that matches this description. Another possibility is that local looming detectors – in

addition to exciting the widefield neuron – also inhibit it via an interneuron (Figure 6D). Then the

long-lasting habituation could be explained by the potentiation of the inhibitory synapse, rather

than depression of the excitatory synapse. In that case, one might expect that repeated looming

stimuli should produce a suppression of the ongoing baseline firing during later stimulus periods.

We never observed such a suppression (Figure 4A). Instead the firing generally increased during

stimulus intervals (rstim) compared to inter-stimulus intervals (risi) (for 15 deep SC neurons with base-

line firing > 10 spikes/s, median rstim=risi, 25th-75th percentile range: 1.03-1.85).

In summary, several alternative explanations for the basic phenomena observed in deep SC neu-

rons seem less likely than the working model that we propose, based on our database of extracellu-

lar recordings. We suggest that the key components of the working model in Figure 6A, namely the

microcircuit for looming selectivity and the long-lasting synaptic depression, are fruitful targets for

further investigation.

Discussion

Summary
The superior colliculus (SC) presents an interesting interface between purely sensory representations

and pre-motor signals. Our goal here was to follow systematically how the sensory inputs from the

retina get digested and filtered in the SC. As a guiding problem we chose a robust visually-triggered

behavior: the defensive reaction elicited by an overhead looming stimulus. By following visual

Figure 6 continued

(B) An alternative model of looming selectivity based on pooling directionally tuned inputs. (C, D) Alternative

models of stimulus-specific habituation: the same input as the excitation drives a persistent inhibition (C) or a

facilitating inhibitory synapse (D). (E) Simulation of responses to various figural stimuli. Green: excitation from

center; red: inhibition from surround; shaded black: net response. (F) Simulation of stimulus-specific habituation.

Each local looming detector connects to the global looming detector with a synapse whose strength w decays

rapidly and recovers slowly.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. A putative local looming detector.
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responses of neurons from superficial to deep layers, we documented three aspects of the sifting

process: (1) an increasing selectivity for the behaviorally relevant looming stimulus over other innocu-

ous stimuli with similar low-level features (Figure 2); (2) an increasing invariance to other aspects of

the visual display, such as the precise location of the threat stimulus (Figure 3); and (3) an increasing

selectivity for novel over familiar stimuli (Figure 4). We considered how this filtering may be

achieved by neural circuits and arrived at a plausible model of circuitry in the SC (Figure 6) that

accounts for all three of the phenomena of visual sifting considered here. Moreover, several alterna-

tive circuit-level mechanisms were found to be inconsistent with the neural signals we encountered.

Relation to earlier work
Some of the phenomena reported here have been described before in a wide range of species. A

common theme is that neurons in deep SC respond over larger regions of the visual field, while

retaining a preference for small stimulus features within that region (Cynader and Berman, 1972;

Dräger and Hubel, 1975; Gordon, 1973; Humphrey, 1968; Ito et al., 2017). Also, the remarkably

persistent habituation to repeated stimuli has been noted previously, even in the earliest recordings

from optic tectum (Cynader and Berman, 1972; Dräger and Hubel, 1975; Horn and Hill, 1966b;

Lettvin et al., 1961; Straschill and Hoffmann, 1969; Woods and Frost, 1977; Reches and Gut-

freund, 2008). Another repeated observation is that the visual cortex appears dispensable for many

aspects of visual processing in the SC (Horn and Hill, 1966a; Humphrey, 1968; Masland et al.,

1971), although it does play a subtle modulatory role (Zhao et al., 2014). Looming stimuli are partic-

ularly effective for many neurons in the superficial SC (Zhao et al., 2014). Interestingly, the early lit-

erature missed this, perhaps because of the technical difficulty of generating an expanding dark disk

with the commonly used hand-held slide projector (Dräger and Hubel, 1975). Our present report

places these disjoint observations into a common context, namely the animal’s need to distill a spe-

cific signal of ecological value from the broad range of visual stimuli. We show that SC neurons are

not only sensitive to looming stimuli but also become increasingly selective in deep layers, an essen-

tial requirement for an alarm system. Further we analyze the neural code at the population level

throughout this brain region, which reveals the gradual progression of stimulus filtering. Finally, we

consider how these aspects of neural representation relate to neural circuitry, and evaluate alterna-

tive hypotheses for such circuits. The results allow a broader consideration of how selectivity and

invariance come about in brain processing, to be pursued further below.

Ethological significance
The present study focused on stimuli presented in the upper visual field and recordings performed

from the corresponding medial region of the SC. Arguably, the most behaviorally relevant event in

the upper visual field is the impending arrival of a bigger animal, such as an aerial predator. The

imminent threat that these events pose may account for the profuse responses to dark looming stim-

uli among SC neurons in this region (Figure 2; Zhao et al., 2014). Of course the threats must be dis-

tinguished from innocuous events, like the movement of overhead foliage, or the obscuring of the

sky when the animal moves under shelter. The increased selectivity to the expanding dark disk in the

deeper SC can account for that selectivity (Figure 2C, Figure 4B).

How should one interpret the profound habituation to repeated stimuli in this context? For one,

the habituation does not interfere with the alarm response, since the animal must react to the first

occurrence of a clear looming stimulus (Yilmaz and Meister, 2013). If the animal escapes or freezes,

and the predator approaches a second time, this is likely in a different part of the visual field, and

thus unaffected by the location-specific habituation. On the other hand, if the same stimulus recurs

periodically in the same location, it is more likely caused by a leaf waving in the wind. Thus, the

habituation can be seen as another processing strategy to reject innocuous events from the alarm

pathway.

In the lower visual field the animal has different behavioral needs, such as picking out seeds

against a cluttered background, following small moving prey (Hoy et al., 2016), perhaps identifying

urine marks (Joesch and Meister, 2016), and tracking optic flow. Furthermore the connectivity

between SC and other brain areas seems to differ in the upper and lower visual fields (Savage et al.,

2017). Thus, one expects a corresponding difference in the rules by which visual stimuli are sifted

there, a fertile area for future study.
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Selectivity, invariance, and habituation
One remarkable phenomenon in sensory processing is the emergence of neuronal responses that

are both highly selective and broadly invariant. For example, certain ‘face cells’ in the primate visual

cortex respond selectively to one person’s face regardless of the view angle, scale, or illumination

(Freiwald and Tsao, 2010). How do these seemingly conflicting characteristics arise within sensory

circuits? In the working model we propose here (Figure 6A) the answer is ‘first selectivity then invari-

ance’. An AND operation across input neurons with different dynamics generates a local looming-

selective neuron. These pattern detectors are distributed across the visual field. Then an OR opera-

tion pools across many local pattern detectors to produce the position-invariant response of the

widefield neurons (Figure 7A).

This seems to be the scheme in other neural systems where the circuitry is understood. For exam-

ple, in the auditory brain of the barn owl certain high-order neurons are selective for a particular

interaural time delay, but invariant to the frequency of the sound (Konishi, 2003). These appear to

arise from OR pooling over lower-order neurons that are selective for the same time delay but still

tuned to different frequency bands. Those delay detectors in turn arise from an AND combination of

signals derived from the two ears (Carr and Konishi, 1990). A similar processing scheme applies in

the electrolocation circuits of weakly electric fish that exhibit a jamming avoidance response sensitive

to frequency but invariant to many other parameters of the electric field (Heiligenberg, 1989).

However, this is not the only solution. In the case of face recognition, for example, it seems

implausible that the brain should build separate pattern detectors for each face at each retinal loca-

tion, and then pool over those to achieve invariance. An alternative scheme produces invariance first

and then selectivity (Figure 7B). Here, there exists only a single pattern detector. But the inputs to

this neuron are routed to ‘look at’ different spatial locations through a shifting circuit. The sudden

appearance of any stimulus could engage these shifter circuits to route the corresponding low-level

visual signals into the pattern detector (Olshausen et al., 1993; Ullman and Soloviev, 1999).

The observation of habituation and its specific-

ity to location seems to greatly favor one of these

schemes. Recall that habituation is seen promi-

nently among neurons in the deep SC that are

already highly pattern-selective. In the ‘selectivity

first’ scheme, that places the gain modulation

somewhere prior to the output of the pattern

detector, which is the last spatially localized sig-

nal (Figure 7A). By contrast, the ‘invariance first’

scheme requires the gain modulation to occur in

low-level visual neurons that are not yet pattern-

selective (Figure 7B). This conflicts with our

observations of neurons in the superficial SC that

do not show location-specific habituation

(Figure 4B). In summary, the robust observation

of location-selective habituation in neurons of the

deep SC favors a circuit model that develops

selectivity before invariance.

Of course one can also envision intermediate

solutions. For example, there is speculation that

the visual cortex implements an alternation of

AND and OR stages through a hierarchy of ana-

tomical areas (DiCarlo et al., 2012;

Riesenhuber and Poggio, 1999). Seeing that

most vertebrate species do not have a neocortex,

yet must solve the same problems of invariant

pattern recognition, the SC seems like a promis-

ing arena for the study of high-level visual

processing.

Sel

Sel

Inv

Inv

A

B

Figure 7. The logic of selectivity and invariance. In (A)

feature selectivity is accomplished by combining local

input signals (red and green) with AND logic (X). Then

invariance arises from combining many of those feature

signals with OR logic (+). In (B) there is only a single

feature computation (X). Invariance is achieved by

routing its inputs to local signals in different parts of

the visual field. Arrows indicate where the stimulus-

specific habituation must take place.
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Circuit mechanisms of sensory sifting
While it is tempting to suppose that the observed reduction of visual data is in fact performed within

the SC, such anatomical localization is not a binding conclusion. In the extreme, the neurons of the

deep SC, with their selectivity for fine spatio-temporal features and localized habituation, may simply

reflect the output of a computation that occurs elsewhere. The SC interacts with many other anatom-

ical structures (Basso and May, 2017; Savage et al., 2017), often in a reciprocal fashion. The most

prominent such input, namely from the visual cortex, is likely not required for the essentials of visual

sifting, based on our results with mutant mice (Figure 4E) and prior work with cortical silencing

(Zhao et al., 2014) and ablation (Horn and Hill, 1966a; Humphrey, 1968). To contribute to sifting,

the partner areas should retain a spatial resolution of the stimulus on the order of 10˚. This constraint

eliminates some small nuclei, but leaves several candidates in place, for example the thalamic area

LP (Allen et al., 2016) and the parabigeminal nucleus. Given the position of the SC as a hub of brain

pathways, it is an open question whether one can ultimately assign discrete computational functions

to discrete anatomical areas.

On a finer level one may ask how the circuit models of Figure 6 map onto neuron types in the

SC. About five cell types have been distinguished in the superficial SC of mammals based on mor-

phology alone (Langer and Lund, 1974; May, 2006), and more recent studies have connected these

types to visual responses and electrophysiological properties (Gale and Murphy, 2014). The most

compelling by their visual appearance are the so-called widefield or bottlebrush neurons. These cells

have a dendritic fan that extends towards the surface of the SC and spreads out laterally to cover a

large area in the retinorecipient layers. Each dendrite terminates in a bottlebrush-shaped ending,

and the overall morphology is startlingly similar across birds and mammals (Luksch et al., 1998;

Major et al., 2000). The widefield neurons of mammals project to the pulvinar, and the axon forms

multiple collaterals in the SC that could propagate the output to the deep layers (Basso and May,

2017; Major et al., 2000).

By virtue of their broad dendritic tree these widefield neurons offer themselves as the substrate

for pooling across spatial locations, as in the working model of Figure 6A. Two further features rec-

ommend such an identification: First, the dendrites of widefield neurons generate spikes that propa-

gate to the soma (Endo et al., 2008; Luksch et al., 2004). In this way, the neuron truly implements

an OR operation across its inputs (Figure 7A): when any of its inputs fire, the output will fire. Sec-

ond, experiments on chick tectum showed that each dendritic input undergoes a profound synaptic

depression that lasts several seconds, but does not affect the function at another dendrite

(Luksch et al., 2004). This could account for the location-specific habituation as in the model of

Figure 6A. However, there is some question whether this synaptic depression also happens in the

mouse (Gale and Murphy, 2016). Also we found a substantial increase of invariance below the ana-

tomical stratum where the widefield neurons reside (Figure 3).

In summary, the visual response properties of deep SC cells differ dramatically from any signal

that emerges from the retina, and it is tempting to associate this transformation with the bottlebrush

neuron that is shaped unlike anything in the retina. Some caution is in order, of course. The diagram

of Figure 6A should be viewed as a conceptual scheme rather than an explicit circuit with one-to-

one corresponding real neurons. Perhaps the selectivity and invariance are accomplished in multiple

stages, or with the contribution of other brain areas. Or the local looming detectors may be nonlin-

ear dendrites, and ion channels with long-lasting inactivation (Ulbricht, 2005) may play the role of

depressing synapses. The increasing availability of genetic handles for cell types in the SC

(Byun et al., 2016; Gale and Murphy, 2014) should help in cracking some of these microcircuits.

Materials and methods

Mouse, surgery, neural recording and spike sorting
We used C57BL/6 mice (RRID:IMSR_JAX:000664) aged 3-10 months (both males and females, Jack-

son Labs) for electrophysiological recordings. To prepare an animal for an experiment, we first

implanted a metal headplate to the skull with a dental adhesive (3M Scotchbond) under anesthesia

(2% isoflurane). After three days of recovery, the animal was habituated to being head-fixed on a cir-

cular treadmill for ~30 min/day for 3 days. On the day of recording, the animal was again anesthe-

tized and a craniotomy (< 1 mm diameter) was made over the SC (0.2-0.4 anterior to lambda,
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~0.5 mm lateral from midline). A small hole was made over the cerebellum to insert a silver reference

wire. The craniotomy was then closed with a silicone elastomer (Kwik-Cast, WPI). After 6-8 hours of

recovery, the animal was head-fixed and the craniotomy was exposed. A silicon neural probe was

then lowered slowly into the brain (< 5m m/s) and the depth from brain surface was recorded. The

craniotomy was then covered with mineral oil to prevent drying of the exposed tissue. We waited a

short period (15-30 min) for signals to stabilize before starting the recording. A typical recording ses-

sion lasted 2-3 hours. All procedures were performed in accordance with institutional guidelines and

approved by the Caltech IACUC.

The silicon neural probes were obtained from Sotiris Masmanidis (UCLA) (Du et al., 2011). For

the majority of experiments, probe types 128A, 128AN, and 128DN were used. For data acquisition

we used the RHD2000 128-channel amplifier board and the RHD2000 USB interface board (Intan).

Auxiliary signals including the movement of the running wheel, timing of the stimulus, and timing of

pupil video recording were collected concurrently with the neural signal. We used KiloSort

(Pachitariu et al., 2016) for spike sorting of the data. The output of the automatic template-match-

ing algorithm of KiloSort was visualized and manually curated on Phy (Rossant et al., 2016;

Rossant, 2017).

To test if the long-lasting stimulus-specific habituation requires the neocortex and the hippocam-

pus, we also recorded in mutant mice that developmentally lack these brain areas (Kim et al., 2010).

These animals were bred by conditional knockout of exon 3 of Pals1 gene in cortical progenitor cells

during embryonic development, achieved by crossing Pals1flox/flox mice with LoxP sites inserted

upstream and downstream of exon three with Emx1-Cre animals (Jackson Labs, Strain 005628)

expressing Cre recombinase in the cortical progenitor cells. Conditional knockout of both copies of

Pals1 due to Cre-mediated recombination during development resulted in Emx1-Cre:Pals1flox/flox

homozygous progeny used in this study (Figure 4—figure supplement 3).

Behavioral measures
The animal’s pupil diameter and locomotion on the circular treadmill were recorded along with the

neural signals. The animals were not trained in any particular task and varied in their tendency to run

on the treadmill. When looming stimuli were presented, the animals sometimes reacted by stopping

(if the stimulus had arrived during a movement bout) or showing an increase in the pupil size (Fig-

ure 4—figure supplement 2C), but no characteristic behavioral output was consistently observed.

However, we could rule out the possibility that the strong response of deep SC neurons to the first

presentation of the looming stimulus is a simple consequence of motor output or change in pupil

size, as they were usually not modulated by these factors in the absence of the looming stimulus

(Figure 4—figure supplement 2). We also tracked the position of the pupil to monitor the eye

movements. In many cases, the eyes were very stable, as demonstrated by the sharp (~5˚), circular

receptive fields we recovered (Figure 2B) in the superficial SC by spike-triggered average analysis.

Post-hoc identification of the recorded brain area
Prior to implanting into the brain, the tip of the silicon probe was covered with fluorescent lipophilic

dye (DiD or DiI, Invitrogen). Immediately after recording, the animal was anesthetized and perfused

with saline and 4% PFA. The brain was harvested and fixed with 4% PFA (Electron Microscopy Scien-

ces) for 24-48 hours at 4˚C, after which it was sectioned coronally at 100 mm thickness with a vibra-

tome (Leica). The sections were then stained with anti-Calb1 antibody (Swant, CB-38a, 1:1000

dilution), which has been previously reported to label the superficial gray layers of the SC

(Rousso et al., 2014). Following secondary antibody staining (AlexaFluor 488, donkey-anti-rabbit,

1:1000 dilution), sections were mounted with Vecta-Shield:DAPI and imaged using a confocal micro-

scope (LSM800, Zeiss). From this we could estimate the location of the probe relative to SC layers

(Figure 1—figure supplement 1). This histology-based method of localizing the probe relative the

SC layers was complemented with current source density (CSD) analysis. First, the raw, broadband

recording was low-pass filtered (150 Hz cutoff) to isolate the LFP band. Then the Laplacian of a col-

umn of spatially contiguous electrodes was computed and smoothed with a Gaussian kernel. This

revealed a series of current sources and sinks in response to visual stimulation (Figure 1—figure sup-

plement 1). By comparing this CSD analysis to the histological localization, we confirmed the results

from Stitt et al. (2013) that the inflection point between the current source and sink marks the
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bottom of the superficial gray layer (SGS). We then defined the boundary between the superficial

and deep layers as 100 mm below the inflection point (corresponding to 0 depth in Figure 2C–D,

Figure 3B–C, and Figure 4B) to account for the thickness of the optic layer.

Stimuli
Visual stimuli were programmed using the Psychtoolbox (Brainard, 1997; Kleiner et al., 2007) pack-

age in MATLAB (Mathworks) and presented on a gamma-corrected monitor (IPS231, LG) at baseline

luminance of ~25 cd/m2. The position of the monitor was slightly adjusted in each experiment such

that the receptive fields of the neurons being recorded were located near the center of the monitor.

Usually this was at ~35˚ in elevation and ~45˚ in azimuth (to the left) from the rostro-caudal axis of

the animal. The monitor was located 15-20 cm from the animal and covered ~120˚of the horizontal

field of view. The visual stimuli were synchronized to the neural recording by using a photodiode to

send timing pulses from the monitor to the data acquisition board.

Before presenting the stimuli, we used a small flickering spot to map the part of the monitor that

elicited strong neural responses (‘response zone’). Figural stimuli were then presented at these loca-

tions. The following is a description of each stimulus type during the stimulus period.

Definition of stimulus period
Throughout this report, the periods during which the stimulus was presented on the screen are

called stimulus periods and are marked as pink sections in the PSTHs. Outside the pink sections, the

screen was uniformly gray.

Looming stimulus
The looming stimulus expanded from 0˚ to ~30˚ at a linear expansion rate of ~30-60˚ /s and then

remained stationary for another 250 ms before disappearing. It was presented at the full contrast

achievable by the monitor. This repeated for 5-10 trials at the same location. The inter-stimulus inter-

val was 1-3 s, except when the time to recover from habituation was explicitly tested (Figure 4D).

Other figural stimuli
The contracting black, expanding white, and contracting white disks were presented with similar

parameters as the looming stimulus. The stationary period of 250 ms was always at the end of the

expansion or the contraction. The dimming and the moving dark disks were the same size as the

final size of the looming stimulus. The rate of change in contrast of the dimming disk and the trajec-

tory and the speed of the moving dark disk were set such that they had roughly the same duration

as the looming stimulus. The moving dark disk traveled at ~40-70˚ /s, with the response zone in the

middle of the trajectory. Several different movement directions were tried.

Flickering checkerboard
During the flickering checkerboard stimulus, the entire screen was divided into square checkers (~3˚)

whose intensity changed randomly between black and white in every frame at a refresh rate of

60 Hz. The duration ranged from 300 to 600 s, but often 300 s was enough for the spike-triggered

average analysis.

Random loom
In the ‘random loom’ experiment, 25 locations (in a 5 � 5 grid) around the response zone were

selected, with ~15˚ between adjacent locations (measured from center to center). In each trial, one

looming stimulus was presented in one of these locations with the parameters described above. The

sequence of stimulus locations was determined with a pseudorandom number generator. The inter-

stimulus interval was 3 s and ~60-120 trials were presented in total.

Analysis
The progression of visual response properties with depth in the SC was discovered in early explor-

atory experiments. A subsequent round of recordings was performed to validate the initial observa-

tions. The present manuscript analyzes data from only these replication experiments. All analysis

scripts were written in MATLAB R2016b (Mathworks) unless otherwise noted.
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Definition of neural response and background activity
Throughout our analysis, the neural response is defined as the number of spikes that a neuron fired

during the stimulus period (as described above). Some neurons had a maintained baseline firing

rate. The background activity is defined as the expected number of spikes contributed by the base-

line firing rate during the stimulus period. To compute this, we estimated the baseline firing rate by

counting the spikes fired during the ~5-10 s-long period just preceding the stimulus and dividing by

length of this period. We then multiplied this by the stimulus period to get the background activity.

The background activity was used to test if the neural response was visually driven (see below).

Identification of visually responsive neurons
Many of the recorded neurons had no clear response to visual stimuli. In a typical neurophysiology

experiment, visually responsive neurons can be separated from others by presenting the stimulus

many times and choosing only those that respond consistently across repetitions. In our experi-

ments, we did not have the luxury of repeating the stimuli, as many neurons (esp. in the deep SC)

showed significant habituation after just a single presentation (Figure 4A–B). To identify visually

responsive neurons from single trials, we instead used a statistical method. First, we computed the

neural response and the background activity (see above). We then computed a p-value for the neural

response based on a Poisson noise model whose mean was the background activity. If the p-value

was less than the pre-set cutoff of 0.005, we considered the response to be visually driven. In cases

where the background activity was very low (< 1 spike), the mean of the Poisson model was set to

one so that chance firing of 1–2 spikes during the stimulus period would not be considered as a

visual response.

This significance criterion was used to select neurons to include in the analysis shown in Figure 2,

Figure 3 and Figure 4 (see below). When computing quantities of interest (e.g. selectivity index), we

first subtracted the background activity from the neural response. In Figure 3, the analysis required

identification of significant responses from a series of stimulus presentations. To compensate for this

multiple comparison, we applied a Bonferroni correction by dividing the p-value cutoff by the num-

ber of stimulus presentations.

Receptive field analysis with flickering checkerboard
To measure the spatio-temporal receptive field (Figure 2B), we computed the spike-triggered aver-

age stimulus (STA) with the neural response to the flickering checkerboard (Meister et al., 1994). In

many neurons that had a strong STA, we could separate the center and the surround of the recep-

tive field by performing singular value decomposition (SVD) on the STA (Wolfe and Palmer, 1998).

SVD expresses the spatio-temporal STA as a sum of terms, each of which is a product of a purely

spatial and a purely temporal function. The terms are ordered by decreasing contribution to the

overall variance in the STA data. We found that often the first term corresponded to the spatial and

temporal profile of the center, and the second term to those of the surround.

Stimulus selectivity
To analyze the selectivity to a looming stimulus over other stimuli (Figure 2C,D), we computed the

looming selectivity index defined as ðrL � rOÞ=ðrL þ rOÞ with r ¼ r0 � �, where r0 refers to the number

of spikes that a neuron fired during the first presentation of the stimulus, m refers to the number of

spikes expected during the stimulus period from the neuron’s baseline firing rate, and the subscripts

L and O refer to the looming stimulus and another stimulus (e.g. contracting white disk), respectively.

For the comparison to flickering checkerboard (Figure 2C), rO ¼ hrCitL � �, where hrCi is the average

firing rate of the neuron during flickering checkerboard and tL is the duration of the looming stimu-

lus. Only neurons that were significantly responsive to either of the two stimuli being compared

based on the Poisson significance criterion outlined above were included in the analysis.

Position invariance
To analyze the invariance to stimulus location (Figure 3B), we estimated the receptive field of

recorded neurons from the results of the ‘random loom’ experiment in which looming stimuli

appeared randomly at one of 25 locations (5 � 5 grid) in each presentation. The looming stimulus

was chosen because unlike the checkerboard stimulus, it reliably drove both sSC and dSC neurons.
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First, we defined the function rðxÞ that specifies the maximum response (in spikes) of a neuron to a

stimulus at location x ¼ ðx1; x2Þ. Then we (1) set to zero the responses that did not deviate signifi-

cantly from baseline activity; and (2) subtracted the expected number of spikes during stimulus

period due to baseline activity from rðxÞ. To capture the width of the receptive field given by the

remaining responses, we computed the mean radial distance D ¼
P

kx� ckrðxÞð Þ=
P

rðxÞ where

c ¼
P

xrðxÞð Þ=
P

rðxÞ is the center of mass of the receptive field and k � k is the Euclidean norm.

Then we defined the receptive field size as 2D, that is twice the mean radial distance from the center

of mass. Based on this method, neurons that respond to stimuli at only a single location would have

a receptive field size of zero, as D ¼ 0. We corrected this by adding the inter-center distance

between stimuli (often ~15˚) to the estimated receptive field size of all neurons, as this determined

the spatial resolution of our experiment.

Variability in response latency
In addition, we analyzed the variability of response latency during this experiment (Figure 3C). We

defined the latency as the timing of the first spike during the stimulus period. We included only the

neurons that met the following conditions: (i) background activity (as defined above) is less than 1;

and (ii) shows statistically significant response to at least five trials in the random loom experiment.

Condition (i) is required by our definition of latency. Condition (ii) is required because we define the

variability of latency as the standard deviation of the timing of first spike, and this requires some

number of samples to compute. 41 sSC and 128 dSC neurons that met condition (ii) but not (i) were

discarded, and the final plot in Figure 3C shows 37 sSC and 70 dSC neurons. Finally, to avoid includ-

ing spikes not due to visual stimulation, we required that the first spike to not occur earlier than

30ms= since stimulus onset.

Stimulus-specific habituation
To analyze the stimulus-specific habituation (Figure 4B), we computed the habituation index defined

as 1 – ri=r1 where ri ¼ r0i � � refers to the number of spikes a neuron fired in the i-th repetition of the

looming stimulus (r0i ) after subtracting the expected number of spikes due to baseline activity (m).

Analysis with i ¼ 4, 7, and 10 did not yield significantly different results (Figure 4B uses i = 10). Only

the neurons whose initial response to the looming stimuli met the significance criterion were

included in the analysis.

Statistical test
Furthermore, we tested if the empirical distributions of sSC and dSC neurons differ significantly from

each other in Figure 2C–D, Figure 3B–C, and Figure 4B. To do so we applied the two-sample Kol-

mogorov-Smirnov test using the MATLAB function kstest2. In all cases the computed p-values

were less than the pre-set cutoff of 0.005 and were reported within the figure panels.

Recovery from habituation
To analyze the time to recover from the habituation (Figure 4D), a series of looming stimuli was pre-

sented at a single location with inter-stimulus intervals of 1.5, 2, 6, 11, 21, 61, and 121 s, in this

order. The extent of recovery was defined as ri=r1 where ri ¼ r0i � � refers to the number of spikes a

neuron fired in the i-th repetition of this series (r0i ) after subtracting expected number of spikes due

to baseline activity (m). This was done for simultaneously recorded sSC and dSC neurons that met

the significance criterion. The 25th, 50th (median), and 75th percentiles were then computed sepa-

rately for sSC and dSC neurons and plotted in Figure 4D.

Decoding analysis
We analyzed the population of neurons from superficial and deep SC to decode stimulus variables in

the ‘random loom’ experiment (Figure 5). Specifically, we asked if the population activity contains

information about the location (i.e. in which of the 25 possible locations did the stimulus appear?)

and novelty (i.e. is this the first stimulus to appear at a location?) of the stimuli.

To do so, we first pooled neurons from three recordings that used similar parameters of the ‘ran-

dom loom’ experiment. Because of retionotopy in the SC, superficial SC neurons recorded by a sin-

gle shank of the silicon probe tend to have overlapping receptive fields. As a result, decoding
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stimulus location from the superficial SC neurons requires sampling them throughout the retinotopic

map, which is difficult to do experimentally. Working on the assumption that different parts of the

map contain equivalent neural representations, we augmented the data by generating virtual neu-

rons whose response profiles were spatially shifted copies of actual neural responses. Specifically,

each copy shifted the response profile to one of the eight adjacent locations in a 3 � 3 grid with the

original response profile in the center. The neurons were then divided into two groups (sSC and

dSC) based on the depth of the channel with maximum waveform. This augmentation process

increased the number of neurons used in this analysis from 106 (38 sSC and 68 dSC) to 963 (342 sSC

and 621 dSC). Some neurons whose response profile after shifting lay outside the stimulus presenta-

tion area were discarded.

After this, the data consisted of neural response of the augmented sSC and dSC populations in

each of the ~100 trials. In the case of the location decoder, the labels were multi-class and ranged

from 1 to 25 (one for each stimulus location). In the case of the novelty decoder, the labels were

binary (stimuli that were novel, that is the first to appear at a location, were 1; others were 0). The

performance measure was the mean four-fold cross validation score. The chance performance for

the location decoder is the maximum of the number of times the stimulus appeared at each of the

25 locations, divided by the total number of presentations (i.e. maxifni=
P

j njg, where ni refers to the

number of times the stimulus appeared at location i). In our data, this was roughly 10%. The chance

performance for the novelty decoder is the number of non-novel presentations divided by the total

number of presentations. Given that there were 25 possible locations and 100 trials, this was roughly

75%.

We then subsampled sets of 5, 10, 30, 70, 150, 300 neurons from each of the two groups and

used their responses to train the location and novelty decoders. This was done with the Logisti-

cRegression class in the scikit-learn package (Pedregosa et al., 2011) in Python using the follow-

ing parameters: penalty = ‘l2’, C = 1.0, max_iter = 5000. This process was repeated with 100

random subsamples, and the mean and standard deviation of this ensemble were computed and

plotted in Figure 5.

Model
In the circuit of Figure 6A, we modeled each input neuron as a linear-nonlinear (LN) element. The

neuron’s response was calculated as

rðtÞ ¼NðgðtÞÞ (1)

where

gðtÞ ¼ sðx;y; tÞ � kðx;y; tÞ ¼

Z

x

Z

y

Z t

t0¼�¥

sðx;y; t0Þkðx;y; t� t0Þdt0 dydx (2)

is the convolution of the stimulus s with the spatio-temporal receptive field k. The receptive field

kðx;y; tÞ was parametrized as

kðx;y; tÞ ¼ Fðx;yÞTðtÞ (3)

Fðx;yÞ ¼ exp �
x2 þ y2

2s2

� �

(4)

TðtÞ ¼
t

t 1

� �n1

exp ð�n1ðt=t 1 � 1ÞÞ� b
t

t 2

� �n2

exp ð�n2ðt=t 2 � 1ÞÞ (5)

The nonlinear transformation was a half-wave rectifier:

NðgÞ ¼maxð0;mg� �Þ (6)

where � is a threshold and m is a scaling factor. The firing rate of the local looming detector neuron

(LD) was computed from the difference between the responses of the center and surround neurons:
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rLDðtÞ ¼NðrcðtÞ� rsðtÞÞ (7)

and the response of the widefield neuron (WF) was computed from the various local detectors as

rWFðtÞ ¼
X

i

wirLD;iðtÞ (8)

where wi is the synaptic weight from local neuron i onto the widefield neuron. We modeled the

habituation in the synapse between local detectors and the widefield neuron with a differential equa-

tion of three parameters for short-term synaptic depression and recovery:

d

dt
w¼

1�w

t

� aðw�wminÞrðtÞ (9)

where t is the time constant for synaptic recovery, a is a gain factor for depression, and wmin is a

floor on synaptic strength. The simulation in Figure 6F used a¼ 1 and wmin ¼ 0.

The temporal kernels used for the center and surround neurons feeding the local looming detec-

tor were taken from the measured receptive fields of mouse alpha retinal ganglion cells

(Krieger et al., 2017). Table 1 lists the parameter values chosen. We arranged local looming detec-

tors on a grid with 15˚ spacing between the centers of adjacent cells.
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Table 1. Parameter values used for the model in Figure 6, as defined by Equations 3, 4, 5, 6, and

9.

Receptive field (Equations 3, 4 and 5)

Parameter Center Surround

s 4.00˚ 10.0˚

t 1 104 ms 84.6ms

n1 2.77 1.24

t 2 91.2 ms 79.7 ms

n2 3.94 1.87

b 1.34 1.33

Nonlinearity (Equation 6)

Parameter Value

m 1

� 0

Synaptic depression (Equation 9)

Parameter Value

a 1

wmin 0
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Dräger UC, Hubel DH. 1975. Responses to visual stimulation and relationship between visual, auditory, and
somatosensory inputs in mouse superior colliculus. Journal of Neurophysiology 38:690–713. DOI: https://doi.
org/10.1152/jn.1975.38.3.690, PMID: 1127462

Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis SC. 2011. Multiplexed, high density electrophysiology with
nanofabricated neural probes. PLOS ONE 6:e26204. DOI: https://doi.org/10.1371/journal.pone.0026204,
PMID: 22022568

Endo T, Tarusawa E, Notomi T, Kaneda K, Hirabayashi M, Shigemoto R, Isa T. 2008. Dendritic IH ensures high-
fidelity dendritic spike responses of motion-sensitive neurons in rat superior colliculus. Journal of
Neurophysiology 99:2066–2076. DOI: https://doi.org/10.1152/jn.00556.2007, PMID: 18216232

Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T. 2018. A synaptic threshold mechanism for
computing escape decisions. Nature 558:590–594. DOI: https://doi.org/10.1038/s41586-018-0244-6, PMID: 2
9925954

Feinberg EH, Meister M. 2015. Orientation columns in the mouse superior colliculus. Nature 519:229–232.
DOI: https://doi.org/10.1038/nature14103, PMID: 25517100

Freiwald WA, Tsao DY. 2010. Functional compartmentalization and viewpoint generalization within the macaque
face-processing system. Science 330:845–851. DOI: https://doi.org/10.1126/science.1194908, PMID: 21051642

Gale SD, Murphy GJ. 2014. Distinct Representation and Distribution of Visual Information by Specific Cell Types
in Mouse Superficial Superior Colliculus. Journal of Neuroscience 34:13458–13471. DOI: https://doi.org/10.
1523/JNEUROSCI.2768-14.2014

Gale SD, Murphy GJ. 2016. Active Dendritic Properties and Local Inhibitory Input Enable Selectivity for Object
Motion in Mouse Superior Colliculus Neurons. Journal of Neuroscience 36:9111–9123. DOI: https://doi.org/10.
1523/JNEUROSCI.0645-16.2016

Gordon B. 1973. Receptive fields in deep layers of cat superior colliculus. Journal of Neurophysiology 36:157–
178. DOI: https://doi.org/10.1152/jn.1973.36.2.157, PMID: 4574712

Heiligenberg W. 1989. Coding and processing of electrosensory information in gymnotiform fish. The Journal of
Experimental Biology 146:255–275. PMID: 2689565

Helms MC, Ozen G, Hall WC. 2004. Organization of the intermediate gray layer of the superior colliculus. I.
intrinsic vertical connections. Journal of Neurophysiology 91:1706–1715. DOI: https://doi.org/10.1152/jn.
00705.2003, PMID: 15010497

Horn G, Hill RM. 1966a. Effect of removing the neocortex on the response to repeated sensory stimulation of
neurones in the mid-brain. Nature 211:754–755. DOI: https://doi.org/10.1038/211754a0, PMID: 5962123

Horn G, Hill RM. 1966b. Responsiveness to sensory stimulation of units in the superior colliculus and subjacent
tectotegmental regions of the rabbit. Experimental Neurology 14:199–223. DOI: https://doi.org/10.1016/0014-
4886(66)90007-0, PMID: 5943702

Lee et al. eLife 2020;9:e50678. DOI: https://doi.org/10.7554/eLife.50678 21 of 23

Research article Neuroscience

https://doi.org/10.1113/JP271707
http://www.ncbi.nlm.nih.gov/pubmed/26842995
https://doi.org/10.1016/S0896-6273(02)01050-4
http://www.ncbi.nlm.nih.gov/pubmed/12467594
https://doi.org/10.1146/annurev-vision-102016-061234
http://www.ncbi.nlm.nih.gov/pubmed/28617660
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1002/cne.23952
http://www.ncbi.nlm.nih.gov/pubmed/26713509
https://doi.org/10.1146/annurev-vision-091517-034142
https://doi.org/10.1146/annurev-vision-091517-034142
http://www.ncbi.nlm.nih.gov/pubmed/29852095
https://doi.org/10.1523/JNEUROSCI.10-10-03227.1990
https://doi.org/10.1080/713663221
https://doi.org/10.1152/jn.1972.35.2.187
https://doi.org/10.1016/j.cub.2016.06.006
http://www.ncbi.nlm.nih.gov/pubmed/27498569
https://doi.org/10.1016/j.cub.2018.07.001
http://www.ncbi.nlm.nih.gov/pubmed/30174186
https://doi.org/10.1016/j.neuron.2012.01.010
http://www.ncbi.nlm.nih.gov/pubmed/22325196
https://doi.org/10.1152/jn.1975.38.3.690
https://doi.org/10.1152/jn.1975.38.3.690
http://www.ncbi.nlm.nih.gov/pubmed/1127462
https://doi.org/10.1371/journal.pone.0026204
http://www.ncbi.nlm.nih.gov/pubmed/22022568
https://doi.org/10.1152/jn.00556.2007
http://www.ncbi.nlm.nih.gov/pubmed/18216232
https://doi.org/10.1038/s41586-018-0244-6
http://www.ncbi.nlm.nih.gov/pubmed/29925954
http://www.ncbi.nlm.nih.gov/pubmed/29925954
https://doi.org/10.1038/nature14103
http://www.ncbi.nlm.nih.gov/pubmed/25517100
https://doi.org/10.1126/science.1194908
http://www.ncbi.nlm.nih.gov/pubmed/21051642
https://doi.org/10.1523/JNEUROSCI.2768-14.2014
https://doi.org/10.1523/JNEUROSCI.2768-14.2014
https://doi.org/10.1523/JNEUROSCI.0645-16.2016
https://doi.org/10.1523/JNEUROSCI.0645-16.2016
https://doi.org/10.1152/jn.1973.36.2.157
http://www.ncbi.nlm.nih.gov/pubmed/4574712
http://www.ncbi.nlm.nih.gov/pubmed/2689565
https://doi.org/10.1152/jn.00705.2003
https://doi.org/10.1152/jn.00705.2003
http://www.ncbi.nlm.nih.gov/pubmed/15010497
https://doi.org/10.1038/211754a0
http://www.ncbi.nlm.nih.gov/pubmed/5962123
https://doi.org/10.1016/0014-4886(66)90007-0
https://doi.org/10.1016/0014-4886(66)90007-0
http://www.ncbi.nlm.nih.gov/pubmed/5943702
https://doi.org/10.7554/eLife.50678


Hoy JL, Yavorska I, Wehr M, Niell CM. 2016. Vision drives accurate approach behavior during prey capture in
laboratory mice. Current Biology 26:3046–3052. DOI: https://doi.org/10.1016/j.cub.2016.09.009,
PMID: 27773567

Humphrey NK. 1968. Responses to visual stimuli of units in the superior colliculus of rats and monkeys.
Experimental Neurology 20:312–340. DOI: https://doi.org/10.1016/0014-4886(68)90076-9, PMID: 4968590

Inayat S, Barchini J, Chen H, Feng L, Liu X, Cang J. 2015. Neurons in the most superficial Lamina of the mouse
superior colliculus are highly selective for stimulus direction. Journal of Neuroscience 35:7992–8003.
DOI: https://doi.org/10.1523/JNEUROSCI.0173-15.2015, PMID: 25995482

Ito S, Feldheim DA, Litke AM. 2017. Segregation of visual response properties in the mouse superior colliculus
and their modulation during locomotion. The Journal of Neuroscience 37:8428–8443. DOI: https://doi.org/10.
1523/JNEUROSCI.3689-16.2017, PMID: 28760858

Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod-cone opponency. Nature 532:236–
239. DOI: https://doi.org/10.1038/nature17158, PMID: 27049951

Kim S, Lehtinen MK, Sessa A, Zappaterra MW, Cho SH, Gonzalez D, Boggan B, Austin CA, Wijnholds J,
Gambello MJ, Malicki J, LaMantia AS, Broccoli V, Walsh CA. 2010. The apical complex couples cell fate and cell
survival to cerebral cortical development. Neuron 66:69–84. DOI: https://doi.org/10.1016/j.neuron.2010.03.
019, PMID: 20399730

Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C. 2007. What’s new in psychtoolbox-3. Perception
36:21. DOI: https://doi.org/10.1068/v070821

Konishi M. 2003. Coding of auditory space. Annual Review of Neuroscience 26:31–55. DOI: https://doi.org/10.
1146/annurev.neuro.26.041002.131123, PMID: 14527266

Kowler E. 2011. Eye movements: the past 25 years. Vision Research 51:1457–1483. DOI: https://doi.org/10.
1016/j.visres.2010.12.014, PMID: 21237189
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