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Abstract

Animals can learn efficiently from a single experience and
change their future behavior in response. However, in other
instances, animals learn very slowly, requiring thousands of
experiences. Here, I survey tasks involving fast and slow
learning and consider some hypotheses for what differentiates
the underlying neural mechanisms. It has been proposed that
fast learning relies on neural representations that favor efficient
Hebbian modification of synapses. These efficient represen-
tations may be encoded in the genome, resulting in a reper-
toire of fast learning that differs across species. Alternatively,
the required neural representations may be acquired from
experience through a slow process of unsupervised learning
from the environment.
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Introduction
How animals learn and store information is a central
question in brain science. Another area of great interest

is how we make decisions between possible actions. The
two problems are closely related, in that learning and
memory serve the purpose of guiding future decisions.
Indeed we generally assess what an animal has learned
by tracking how it makes decisions when presented with
the identical context before and after learning.

The present review is about the rate of learning: how
much information does the animal extract from its
experience and how long does that take? We will see that
the rate of learning varies dramatically depending on the

kind of task the animal performs. The tasks most
www.sciencedirect.com
popular in laboratory studies of decision-making involve
learning at least a factor of 10,000 slower than during
natural behaviors. I will discuss possible explanations for
this huge discrepancy and some conclusions one may
draw for the study of neural mechanisms that imple-
ment learning.
How fast do animals learn?
We will want to compare very different behavioral tasks
and species, in the laboratory and in nature, and thus
need a quantitative measure of learning that generalizes
across these conditions. In the most general sense,
learning concerns the transfer of information from the
environment to the animal, and thus information theory
offers a suite of tools needed for measurements and
analysis in this domain [1,2]. The Methods section lays
out the measures used in this article.

Figure 1 summarizes a survey of case studies. It plots
the amount of information an animal extracts against
the number of experiences required for that learning to
take place. Two cautionary notes are in order: first, the
broad range of species and activities considered here
requires some approximations and assumptions, so the
measures here should be considered rough estimates. A
more detailed argument may conclude that the number
is off by a factor of 2. However, this article is not about
factors of 2 but factors of 10,000 or more. Second, the

analysis is restricted to the task-relevant information
that guides the animal’s decision. For example, before a
child can learn a new word it must already have ac-
quired a number of generic motor and cognitive skills;
here we consider only the process of adding another
word to the vocabulary.

A good laboratory example of “one-shot” learning occurs
during fear conditioning in rodents. Here, a formerly
innocuous stimulus gets associated with a painful
experience, such as electric shock, leading to subse-

quent avoidance of the conditioned stimulus [3]. Rats
and mice will form this association after a single expe-
rience lasting only seconds, and alter their behavior over
several hours, with near-perfect recognition of the
conditioned stimulus. This is an adaptive warning
system to deal with life-threatening events, and rapid
learning in this case has a clear survival value. Formally,
the resulting behavior maps that stimulus onto one of
two actions: freeze vs proceed. So the complexity of this
task is one bit, representing the maximum amount of
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Figure 1

Learning rates. The complexity of various tasks plotted against the number of reinforcement trials required to learn them. Note the learning rates span 4
orders of magnitude. See text and Methods for literature and calculations.
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information that the animal can transfer from its expe-
rience to future behavior (Methods).

Another case of learning from single exposure is the
Bruce effect: a female mouse learns the smell of her
mating partner and uses that to recognize the mate in
subsequent encounters. If she meets a strange male that
threatens infanticide, she will terminate the pregnancy
[4,5] about half the time, whereas if she meets her mate

again that does not happen. Learning the mate’s odor
changes her subsequent behavior in response to this
particular mouse. Again the complexity of this task is
one bit. Note that the physiological pathways underlying
the Bruce effect are innate and do not need to be
learned. However, to implement the program the dam
must acquire a small amount of olfactory information
during the mating experience and retain that through
subsequent encounters.

Learning about foods also occurs remarkably fast. For

example, laboratory mice with no experience of live prey
will overcome their innate aversion to a moving insect
after just a handful of encounters [6]. On the opposite
end of the spectrum, animals learn to avoid a food that
causes intense nausea after just a single experience [7].

Of course animals learn more complex tasks as well. For
example, mice exploring a labyrinth can learn the
shortest route to a reward location that involves many
consecutive turning decisions (Figure 4b). A route that
requires 9 bits of information can be learned after about

10 experiences of reward [8]. This is also a common
theme in many classic studies of rat navigation in mazes.
Typically solving the maze involves about 10 correct
Current Opinion in Neurobiology 2022, 75:102555
turns and the learning curves approach perfection after
about 10 successful trials [9,10].

Another classic branch of animal psychology involves
animals escaping from or breaking into a puzzle box
[10]. The animal must discover which among the many
possible actions would open the door to freedom.
During five minutes of struggle in the box, a cat might
attempt several hundred actions. Among those it has to

associate one with success, which amounts to learning
something in the vicinity of 8 bits. Again, the animals
master these tasks after 5e20 successful trials,
depending on the intricacy of the lock mecha-
nism [11,12].

From personal experience we know many cases of fast
learning in humans. For example, children and adults
will acquire a new word after experiencing it in context
only a few times [13e15]. A typical “Animal menagerie”
book for children introduces an animal name for every

letter of the alphabet. When a child learns to correctly
point to the kangaroo, it has acquired 4.7 bits of task-
relevant information (see Methods).

All the examples considered so far involve a healthy
learning rate of about 1 bit per reinforcement experi-
ence (Figure 1). Another set of tasks occupies a very
different part of the graph, with learning rates of 10�4

bits per trial or less. These include various trained be-
haviors that are popular in neural studies of learning and
decision-making.

For example, a long line of research is based on training a
macaque monkey to flick its eyes to the left or right
www.sciencedirect.com
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Figure 2

Pattern separation in higher dimensions. (a) Here, m different events (dots) are encoded by the firing rate of 2 sensory neurons (x1 and x2). The brain
wants to classify those events into good (blue) and bad (red). In the original sensory representation that would require computing the complex region
inside the dashed line. (b) After projecting the sensory data into a high-dimensional space, represented by N > m neurons (y1, …, yN), one can generally
find a hyperplane (green) such that all the good points are on one side and the bad ones on the other. The projection from sensory signals xj to the over-
complete representation yi can take the form yi ¼ f ðP2

j¼1wij xj Þ where wij are random synaptic weights and f is some nonlinear activation function.
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when it sees a visual pattern moving to the left or right
[16]. In its simplest version, this is a two-alternative-
forced-choice (2AFC) task that requires the associa-
tion of 2 stimuli with 2 actions (Figure 4a). However, the

monkey takes many weeks to get halfway good at this
task, during which time it performs many thousands of
trials with the exact same experience. Another popular
task for monkeys is the center-out-reach task: here, the
animal has to move its arm to one of eight locations
based on a briefly presented visual cue: a task
complexity of 24 bits. In a recent study, the monkeys
achieved 80% correct performance after 8500 trials,
which included careful shaping of the behavior through
many intermediate stages [17].

In a rodent version of visually driven decision-making, a
mouse watches a monitor and handles a steering wheel
with its paws. When a stimulus happens on the left or
the right side of the screen the animal must turn the
wheel accordingly. Again, a simple 2AFC task, but the
animal requires about 10,000 trials before its learning
saturates, and at that point it performs at 85% correct
[18]. Another task used to study decision-making re-
quires a mouse to sense an object with a single whisker
and discriminate two possible object positions [19].
Again, the animals must train over many weeks and
many thousands of trials to reach a reasonable associa-

tion of stimuli and actions. In an instance of motor
learning, rats were trained to produce two taps at a time
interval of 700 ms [20]. After about 14,000 trials they
matched this interval to an accuracy of 25%. Comparing
www.sciencedirect.com
the response distributions before and after training, one
concludes that the animals learned about 0.55 bits
(see Methods).

Humans engage in some slow learning tasks as well,
particularly in esoteric domains like art, music, and
sports. For example, to become a golf pro takes about 5
years of practice, hitting perhaps 100 drives a day. Top
players can land an approach shot within about 5% of the
hole, from varying distances [21]. Supposing the player
could hit twice as far if she wanted and in all possible
directions, that amounts to a precision of 11 bits after
several years of training (see Methods). Clearly this is
another case of ultra-slow learning (Figure 1).

From this survey it emerges that the learning rate
spans an enormous range, even within the same spe-
cies. For example, a mouse exploring a labyrinth ex-
tracts about 10 bits of information after receiving 10
rewards, whereas the same mouse strapped into a
visual discrimination box will learn a fraction of 1 bit
after 5000 rewards. Another observation is that tasks
phrased in the animal’s natural vocabularydsuch as
mating, escaping, feeding, or navigationdget learned
much faster than tasks that require abstract or arbi-
trary associations between contexts and actions. The
wide gap of 4 log units across learning rates (Figure 1)

suggests that fast and slow learning are served by very
different biological mechanisms. Pursuing that large
discrepancy may well reveal something interesting
about the brain.
Current Opinion in Neurobiology 2022, 75:102555
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Figure 3

Associative learning and sparseness. (a) A simple network to learn the mapping from a set of states onto a set of actions. Stimuli are represented by n
neurons that are either active or inactive, si 2 0, 1. Similarly actions are represented by n neurons. During learning, the network is exposed to the k
desired (state, action) pairs. The synapse from a state neuron to an action neuron is incremented if both pre- and post-synaptic neurons are active. (b)
Recall of the stored association: a state vector is presented to the input and the output of the network is compared to the k possible action vectors; this
shows the resulting similarity matrix. In this case the state and action vectors each have only m = 1 of n = 10 active neurons. The recall of actions
associated with each state is perfect. (c) As in panel b, but each vector is represented by 3 active neurons. Note the extensive confusion from the intended
mapping of states onto actions.
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Biological learning is highly constrained by
mechanism
Why are some things so much harder to learn than
others? One might have suspected that task complexity
is to blame, but that is clearly not the explanation. In
Figure 1 the lowest learning rates appear for certain
2AFC tasks, which have a simple logical structure: two
inputs get paired with two outputs. Other 2AFC tasks,
with the same logical complexity, are learned much
faster. And much more complex tasks, like labyrinths
and puzzle boxes, also show high learning rates. So,
instead of the structural complexity of the task, we
should probably look at the content of what gets

learned, namely the specific sets of stimuli and actions
that need to be paired.

At the level of animal psychology one might argue that
the rodent in a 2AFC box simply does not believe what
we ask it to learn. The particular contingencies
constructed for some of these abstract tasks are highly
implausible under natural conditions. Why should the
animal believe that touching a pole with a whisker and
then stretching the tongue to one side or the other a
second later and then receiving a drop of juice are in

any way causally connected [19]? Among all the
possible hypotheses to entertain about the world this
one must rank very low in terms of prior probability.
Suppose it is 1000 times less plausible than a common
hypothesis, like the association of a food odor with
impending reward. It is then reasonable, as any
Bayesian will attest, that the animal should request
1000-fold stronger evidence for the implausible hy-
pothesis. That could account for the lower learning
Current Opinion in Neurobiology 2022, 75:102555
rates, requiring thousands of repeats of the same
implausible coincidence.

In fact, some such Bayesian selection of hypotheses
during associative learning seems essential for any pro-
ductive learning to proceed [22]. Given the huge
number of possible pairings that occur between an ani-
mal’s ongoing sensory streams and its action streams, the

brain cannot possibly pursue all those correlations with
equal effort. Some choices must be made based on prior
plausibility, or associative learning will always chase false
leads prompted by accidental coincidences. Those
choices will depend on the animal’s ecological niche and
behavioral needs, so that each biological lineage comes
evolutionarily pre-adapted to detect and learn certain
contingencies and not others. Those prior beliefs must
somehow be encoded in the nervous system. What are
some plausible mechanisms for this?

We should consider briefly what is known about the
biological mechanisms of associative learning. It is
generally believed that the substrate of memory re-
sides in the strengths of synapses and the excitability
of individual neurons [23]. The process of learning
involves changes in those variablesdthe synaptic
weights and neuronal thresholdsdcaused by activity
in the network. In turn, those changes alter the net-
work’s future behavior. The nature of these activity-
dependent changes is constrained by some very
restrictive rules.

According to current understanding, the strength of a
synapse gets modified depending to the history of
www.sciencedirect.com
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activity in the pre- and the post-synaptic neurons [24].
Of particular importance is the degree of coincident
activity, which controls whether the synapse experi-
ences long-term potentiation or depression. Some-
times, the degree of this plasticity is modulated by a
third variable, such as a diffuse neuromodulator that
may represent the valence of the animal’s experience.
In addition, there are some non-associative mecha-

nisms, for example a neuron’s threshold for firing de-
pends on its own recent activity. Synaptic plasticity
may appear at multiple pre-synaptic and post-synaptic
sites, and it can act on several different timescales [25].
However, all these effects are ultimately driven by
three variables of neural activity: presynaptic firing, the
postsynaptic membrane potential, and (optionally) the
concentration of a neuromodulator.

To appreciate just how constraining these rules are, it
helps to compare to the learning algorithms used in

artificial neural networks (ANNs). In a typical optimi-
zation algorithm for an ANN, each synaptic weight gets
updated in a way that may depend on all the other
weights and all the activities in the network [26]. Every
synapse “sees” every other synapse and all the neurons.
In a network the size of cortex, the change in one syn-
apse might depend on the state of a billion other vari-
ables. In the biological cortex, it depends on only three.
One should expect that such a limited learning rule will
impose strong constraints on what can and cannot be
learned in biological networks.
Neural representations that favor learning
If biological learning is fundamentally constrained to
sensing the correlations in firing between two neurons,
that has strong implications for how events should be
represented by neural activity in the brain. In particular,

efficient learning benefits from a neural representation
that is both high-dimensional and sparse, for the
following reasons.

High dimensionality
This means that the representation of events should
involve many more neurons than the dimensions in the
space of events.1 To illustrate this, suppose the learning
task is a simple classification of events into two groups
that are “good” and “bad” based on the animal’s expe-
rience. In a low-dimensional space, where every event is
encoded by a specific combination of neural activities,
the good and bad events may be hopelessly interleaved,

requiring a difficult computation to separate the two
groups (Figure 2a).

By contrast, if the events are first mapped into a high-
dimensional space, encoded by a large number of neu-
rons, the two groups can be separated on two sides of a
1 This is also called an “over-complete” representation.

www.sciencedirect.com
hyperplane (Figure 2b). That classification is accom-
plished by the simplest of neural circuitsda percep-
trondwhose synaptic weights can be learned by a
biologically plausible algorithm [27e29]. Note that the
high-dimensional projection itself need not be learned: it
can use random synaptic weights, but must involve a form
of nonlinearity. A number of biological circuits, including
the insect mushroom body and the vertebrate cere-

bellum, are thought to implement such a dimensional
expansion that enables pattern separation [28,30e32].

Sparseness
More general forms of learning go beyond binary clas-
sification, and instead require the pair-wise association
of one set of events with another set. For example, in
learning to navigate a path through a spatial environ-
ment or a game, the agent wants to associate the sensory
stimuli received at each decision point with the actions
that need to be taken there. This kind of pairing can be
learned by a network with Hebbian synapses. For this
purpose, a suitable representation is not only high-
dimensional, but also sparse. In this context, sparse-

ness means that each neuron should be active in only
one of the events to be encoded.2

For illustration, suppose that N stimuli need to be
associated with N actions in a one-to-one pairing. The
stimuli are presented by N S-neurons in a “one-hot”
fashion, meaning each neuron is selective for one of the
stimuli (Figure 3a). Similarly the actions are represented
by N A-neurons in a “one-hot” fashion. The S-neurons
connect to the A-neurons via all-to-all Hebbian synap-
ses. This network can learn all N associations after

experiencing each pairing just once, because each pair-
ing strengthens exactly one synapse between the two
neurons that fire together. From then on, occurrence of
each stimulus will cause the activation of the corre-
sponding action neuron (Figure 3b).

By contrast, suppose the stimuli are encoded in a
distributed fashion across the S-neurons, and similarly
for the actions. As the Hebbian network learns the as-
sociation of stimuli and actions, each synapse now par-
ticipates in many of the pairings. This leads to

interference between the stored associations, some-
times called “catastrophic forgetting”. Thus, the ca-
pacity of the network is much reduced (Figure 3c).
Clearly it is advantageous to segregate the information
about relevant events into single neurons first, before
learning correlations among those events [33e36].
Sparse over-complete neural codes
One generally finds that the neural representation of
relevant eventsdsuch as stimuli and actionsddiffers
2 Sometimes this is called “lifetime sparseness”, referring to the fraction of a neu-

ron’s life that it is active, as opposed to “population sparseness”, which is the fraction of

a population active at any one time.

Current Opinion in Neurobiology 2022, 75:102555
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6 Neurobiology of Behavior
dramatically between the periphery of the nervous
system (receptors and muscle fibers) and the central
regions. At the periphery, the neural code is strongly
determined by the physics of the world (objects causing
sounds and images, forces and speeds needed for
movement) and the structure of the associated external
organs (eye, ear, muscles, and joints). Moving towards
the center, the nervous system chooses a different rep-

resentation that is much more suited to the computa-
tional needs of the animal, in particular associative
learning [37,38]. Here are some examples where we
understand the neural code well enough to spot
these changes.

Vision starts with the layer of photoreceptors in the
retina that use a dense and distributed code. Every
object of interest covers many receptors, and the ob-
ject’s identity is hidden in the combinatorial pattern of
activity across many neurons. Vice versa, every receptor

contributes to many objects. The output of the retina is
already substantially transformed: among retinal gan-
glion cells there are about 40 different types [39], each
much more specialized than the photoreceptors [40].
Some of these neurons fire only sparsely under special
trigger features, for example differential motion within
the image [41]. In primates, the projection from retina
through the thalamus to the primary visual cortex in-
volves a huge expansion of neuron numbers by at least a
factor of 100.3 At the same time, the neural activity gets
even sparser, with the typical cortical neuron firing only

1 spike/s on average [42]. Finally, several synapses later
in infero-temporal cortex, neurons are highly selective
for those high-level features that are directly relevant to
behavior, such as the face of a specific person [43],
invariant to position and orientation.

A similar progression occurs in the olfactory system.
Primary receptors respond rather broadly to many
molecules. The second-order neurons (projection
neurons in insects, mitral cells in vertebrates) are
already more selective. Subsequent layers (Kenyon
cells, piriform cortex) implement a great expansion,

spanning many more neurons than there are primary
receptor types. Each of those neurons fires much more
sparsely than the receptors, only under certain combi-
nations of odors [44,45].

In the motor system one finds a similar change in neural
coding, but in the opposite direction: from sparse
representations centrally to dense codes in the pe-
riphery. A well-studied example is the motor control of
singing in the zebra finch. Signals flow outward from
the center to the periphery through a series of nuclei

[46]: from a premotor cortical nucleus (called HVC) to
a forebrain nucleus (RA) to motor neurons innervating
the syrinx. At the level of HVC, the representation is
3 This is not true in the mouse, where the expansion is only 3-fold.
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maximally sparse: each neuron fires only at one precise
moment during the entire song sequence [47,48].
Neurons in RA already fire at multiple times during the
song, owing to convergence of signals from HVC.
Finally, motor neurons in the brain stem receive a
massively convergent input from many RA cells. They
are active broadly throughout the song, as needed to
shape the airway of the syrinx.

How sparse codes may arise
In all these examples, it appears that the central
representations of events are eminently suited for
rapid associative learning via biological learning rules,
in that single neurons are in fact tuned to the specific
events of interest. How do these particular trans-
formations arise? There are at least two plausible
mechanisms leading to sparse codes: evolution and

life-time experience.

Some of the learning-efficient codes are programmed in
the genome, presumably as a result of many megayears
of trial-and-error experiments. For example, the circuits
of the retina are largely hard-wired genetically, with
little to no dependence on experience. Retinal ganglion
cells are programmed to encode visual changes over
space and time, through lateral inhibition in space and
delayed inhibition in time. Because visual objects tend
to extend over space and time, retinal ganglion cells fire

sparsely only at the edges of objects. These physical
properties of the world have remained unchanged since
the dawn of creation, leaving plenty of time to adapt the
neural code. Indeed these coding principlesdnamely
the focus on temporal or spatial edgesdare remarkably
conserved across vertebrate and invertebrate eyes, even
though they evolved separately and use different
cellular mechanisms.

However, not everything that will be an interesting
event for few-shot learning can be anticipated and

encoded in genetically programmed circuits. The
genome is too small to program even a tiny fraction of
the synapses in the brain. So additional learning-
efficient codes must be acquired from the animal’s
lifetime experience. There are many thousands of visual
objects that may have behavioral significance in some
situations, and it is implausible that special detector
circuits evolved for every such object type. Instead, one
finds that the sparse code arises only during develop-
ment, as the animal gains visual experience. For
example, in the primary visual cortex the sharp tuning to

visual features is strongly dependent on neural activity
in early life.

However, this raises a puzzle: how can a sparse code
develop before the animal knows what relationships
among visual events it will need to learn some day? One
idea is that the visual system learns to develop a sparse
code for objects, regardless of any significance of those
www.sciencedirect.com
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objects. Each object causes a great deal of redundant
structure in the visual image and remains present for
some time. Different objects appear and disappear
independently of each other. In this way an unsuper-
vised learning system that searches for independent
components of an image can eventually learn to repre-
sent objects [49]. A similar “independent component
analysis” is thought to allow us to parse the auditory

signal from a cocktail party into streams produced by
separate speakers [50].

A number of learning mechanisms have been proposed
by which the brain might implement independent
component analysis [51e53]. For example, the Foldiak
network [52] combines a feed-forward projection be-
tween two layers with recurrent synapses within the
output layer. The feed-forward projections obey
Hebbian plasticity rules, whereas the recurrent con-
nections are anti-Hebbian. This leads to the emergence

in the output layer of pattern detectors for independent
components in the input. A succession of such
processing stages could then lead to higher levels
of abstraction.

Importantly, though, any such unsupervised online
learning is necessarily slow. The statistical regularities
that identify the independent events can be assessed
and recognized only over many observations. Of course,
evolutionary learning takes much longer still.

What distinguishes fast and slow learning?
We have arrived at two kinds of explanations for the vast
difference in learning rates seen across tasks: one is
psychological in nature, the other more neural. On the
psychological level, animal learning means making some
inference about how the world works based on obser-
vations. Some of the rules we try to teach animals

through reinforcements are so fantastically implausible
in the world of that species that they require corre-
spondingly more evidence to overcome that bias.
Furthermore, the hypothesis which the experimenter
would like the animal to adopt is in constant competi-
tion with other accidental contingencies that the animal
observes. For example, the mouse might experience an
itch on one side of its bum, and three times in a row the
water reward appeared on the side of the itch. That
correlation will temporarily take over as the favored
hypothesis. Even under the carefully controlled condi-

tions of a head-fixed rodent experiment, most of the
brain’s activity is related to stimuli and actions that have
nothing to do with the task at hand [54,55]. Accidental
correlations in those signals will overwrite the weak
signal from the experimenter’s task rules. The task hy-
pothesis may eventually dominate over the competition,
but only through a slow process of integration that allows
evidence to accumulate over weeks. This can explain
www.sciencedirect.com
both why the performance improves so slowly and why it
tends to saturate at a rather modest level [18,19].

Human communication plays a special role in over-
coming this constraint: a teacher can explain the rules of
a card game, and humans will start playing it decently in
minutes, whereas monkeys would take months to pick
up the rules. Effectively a human teacher can raise the

Bayesian prior for an arbitrary abstract hypothesis to
100% simply by talking about it, and the student will
ignore accidental correlations from then on.

A neural explanation, which may underlie the psycho-
logical onedis that certain events are predestined for
fast learning: if the brain already has a genetically
programmed sparse representation for the events that
appear in the task, then their association can be formed
rapidly. If not, then the brain must first learn a sparse
representation of the events in question, which is itself

a slow process. Thus, the predilection of any given
species to learn certain contingencies better than
others may just be embodied in the structure of its
neural codes.

This interpretation suggests that the abstract 2AFC
tasks with minuscule learning rates (Figure 1) require a
substantial reorganization of the neural code during the
training period. Not much empirical information is
available on this point, because the animals are usually
trained for many weeks before neural recording even

begins. However, recent progress in tracking neuronal
signals over months [56] presents an opportunity to
study such changes in neural representation.

If the hard tasks with low learning rates really require a
phase of unsupervised representation learning, one would
predict that this can take place even in the absence of
reinforcements. As an experimental test of this proposi-
tion, one could place the animal into an environment
with the same types of abstract stimuli and action choices
that appear in the 2AFC task, but without linking them
through the task contingencies. Following a few weeks of

this, one predicts that (1) the brain should develop
concept cells that are specific to key events in the task;
and (2) once the contingencies are put in place, the task
should be learned much more rapidly.

Here also, human experiments might present a special
opportunity. Recordings from epilepsy patients have
revealed neurons that respond sparsely to just one ofmany
possible concepts, like “Bill Clinton” [57]. If a subject is
asked to learn a completely unfamiliar game, one expects
to see new concept cells emerge that sparsely represent

the key events in the game. Again, a coach can accelerate
the learning with verbal explanations. Of course the
challenge here is that one can only sample a minute
Current Opinion in Neurobiology 2022, 75:102555
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Figure 4

Graphs that define behavioral tasks. (a) A typical 2-alternative-forced-
choice task, with states defined by stimuli s1 and s2 and actions of the
animal a1 and a2. The square states terminate a trial with reward (green)
or no reward (red). (b) A more complex task in which the animal starts in
state s1 and then navigates a binary tree by turning left (a1) or right (a2) or
backing up to the previous state (a0). Only one of the end points of the tree
is rewarded. The task can be implemented as navigation in a binary maze.
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fraction of neurons in the brain, but high-density silicon
probes improve the odds significantly.

Do animals benefit from slow learning?
Given the enormous difference in learning rates be-

tween easy and hard tasks (Figure 1) one is forced to ask
whether the learning of hard tasks actually plays any role
in the life of an animal. For a mouse, the 6 weeks of
training required to distinguish two abstract stimuli
represents a good fraction of the animal’s life span. Over
that period a wild mouse develops from a newborn to
having its own pups. It seems unlikely that the wild
mouse uses this time to practice any particular action
10,000 times. Any information in the environment that
is relevant to the mouse’s fate must be picked up on the
first attempt or at most after a few exposures.

Among nonhuman animals, the zebra finch comes tomind
as a possible exception. It spends several weeks of motor
practice honing its song, to where it becomes precisely
reproducible to millisecond resolution [58]. It is thought
that the female bird notices this precision and prizes it
when selecting a mate, although the actual criteria the
female applies remain opaque [59]. Effectively the male
bird’s song functions as a mating display [60], a mental
version of the peacock’s tail: “See howmuch brain effort I
can waste on this ridiculously hard and pointless task,
because everything else comes easy to me.”

We humans have a much longer lifespan. Some of us, at
least, can afford to invest the ten thousand hours
required to become an expert at something esoteric, like
mathematics, or playing the cello, or golf. As a culture we
value these feats of slow learning exhibited by our art-
ists, poets, and sports heroes. They stand out in large
part because they are so unnatural. They also function as
mating displays. So, there is a legitimate interest in the
mechanisms of slow learning. However, a small short-
lived animal like the mouse may not be the best

model system, given that it cannot possibly benefit from
ultra-slow learning. Of course, six weeks of training on a
repetitive task will take its toll, and engrave some kind
of circuit in the plastic brain matter of the mouse. But
those artificial circuits will have little in common with
what the animal uses naturally for learning and decision-
making; nor do they have to align with the mechanisms
of slow learning in humans.

Nonetheless, prodigious resources are invested today in
mouse research focusing on such tasks. The International

Brain Laboratory, a consortium of 22 research groups,
pursues a mission of understanding everything there is to
know about one such behavior: a 2AFC task that requires
>10,000 trials of training to get a performance of 85%
correct [61]. Similarly, the Allen Institute, which has
mounted an industrial-scale effort towards understanding
the mouse brain, uses simple choice tasks in which the
animals are trained over more than 10,000 trials before
Current Opinion in Neurobiology 2022, 75:102555
any neural experiment even begins [62,63]. As a research
community we might ask whether it is wise to focus on
the lower right portion of Figure 1, where animals learn
very little over a very long time. Perhaps an equivalent
effort should be targeted at the upper left portion where
they learn complex behaviors very quickly.

Methods
Quantitative measures of learning
We are considering a general task defined by a set of

states si and actions aj that lead from one state to
another. For example, in a simple 2-alternative-forced-
choice task to teach a rodent odor classification, the
states are given by the two stimuli s1 = “odor A” and
s2 = “odor B”. The actions consist of turning to one of
the two reward ports to lick a drop of water: a1 = “lick
left” and a2 = “lick right”. The rodent’s task is to
learn that s1 should be followed by a1 and s2 by a2.
Typically the training regimen involves rewards and
punishments that follow correct or incorrect choices of
actions. This framework generalizes very broadly to

any task that can be described by a graph with states
as the nodes, actions as the edges, and rewards
distributed along the graph. This includes many nat-
ural behaviors like navigation towards a target, and
cognitive tasks like games.

How complex is the task?
Because learning involves the extraction of information
from experience, it seems natural to apply information-
www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Learning Meister 9
theoretic tools to measure learning. Suppose the animal
needs to associate m possible states with n possible ac-
tions. For each state there is exactly one correct action.
Before learning anything, the animal does not know
which is the correct pairing of states with actions, and
there are nm possible mappings. Before any learning
takes place, the uncertainty about which is the correct
mapping can be measured by the entropy of that

set, namely

Hbef ¼ log2n
m ¼ mlog2n

For the present purpose we will call that the complexity
of the task,

C ¼ Hbef (1)

After learning to perfection, the animal adopts exactly

one of these mappings, so the remaining entropy
Haft = 0. The amount the animal learned is the differ-
ence between these two entropies

L ¼ Hbef �Haft

Thus, the complexity of the task sets an upper bound on
how much the animal can learn.

How much did the animal learn?
Suppose that the animal learns the task incompletely,
and fails to associate exactly one action with each state.
Instead, from state si it produces actions aj with the
conditional probability paft(ajjsi). Then the remaining
entropy over all states is

Haft ¼ �
X
i

X
j

paftðaj jsiÞlog2paftðaj jsiÞ

And the amount learned is

L ¼ Hbef �Haft ¼
X
i

X
j

paftðaj jsiÞlog2
paftðaj jsiÞ
pbef ðajjsiÞ (2)

where

pbef ðajjsiÞ ¼ 1

n

Is the action probability before learning, uniformly

distributed over all possible actions.
www.sciencedirect.com
Examples used in the text
Perhaps the most elementary learning task is a simple
choice between two alternatives, for example when the
animal learns which of two response ports is baited with
a reward. Here m = 1, n = 2, so the complexity is C =
Hbef = 1 bit. Suppose the animal does not learn the task
to perfection, but only chooses correctly a fraction paft of
the time. Then the animal has learned

L ¼ Hbef �Haft

¼ 1þ paftlog2paft þ ð1� paftÞlog2ð1� paftÞbits

This scenario applies to fear conditioning, where the
sound that was paired with shock needs to be associated
with freezing. Responses to other sounds remain the
same as before learning. Similarly for the Bruce effect,

where the smell of the mate gets associated with car-
rying the pregnancy to term. The smells of all other
males are treated the same.

The standard 2-alternative-forced-choice task asks the
animal to match two possible states (stimuli) with two
possible actions. Here m= 2, n= 2, so the complexity is
2 bits. If the animal answers correctly with a probability
paft, and that is spread equally over the two conditions,
then the amount learned is

L ¼ 2
�
1þ paftlog2paft þ

�
1� paft

�
log2

�
1� paft

��
bits

A monkey performing an 8-direction reaching task has to

associate 8 stimuli with 8 movements. If it performs
correctly with probability paft then it has learned

L ¼ 8ð3þ ðpaftlog2paft þ 7
1� paft

7
log2

1� paft
7

Þbits

A child that learns to perfectly match 26 animal names
with 26 pictures in a book (m = n = 26) has learned
26 log226bits. That corresponds to 4.7 bits per word.

What if the action distribution is continuous rather than
discrete? For example in a study on motor learning [20]
rats were trained to produce two taps spaced 700 ms
apart. Before training the animals tapped at intervals of
400 � 200 ms (mean � SD). After training the distri-
bution was 700 � 170 ms. How much did the animal
learn? Suppose the probability density of the action

variable a (here the inter-tap interval) is pbef(a) prior to
learning and paft(a) after. Here we can apply the
continuous version of Eqn. (2):
Current Opinion in Neurobiology 2022, 75:102555

www.sciencedirect.com/science/journal/09594388


10 Neurobiology of Behavior
L ¼
Z

paftðaÞlog2
paftðaÞ
pbef ðaÞ da (3)

If the two distributions are roughly Gaussian, this
measure amounts to 0.55 bits. This is how much the rat
learned about the tapping task it was trained to do.

The case of the golf pro raises some issues. Here, the

target is the hole on the green, and there are good sta-
tistics available on how close the top golfers get to the
hole with their approach shots. However, we do not have
comparable statistics about beginners prior to training;
personal experience suggests that their shots are
distributed more or less independently of the hole.
Instead, here I ask how many different actions the golf
pro has available from which she chooses the best. From
100 yards distance she can place the ball into a 5 yard
radius. Assuming she could hit the ball to 200 yards, there
are 1600 circles of 5 yard radius in that area. So, she is able

to select correctly one of 1600 possible actions, and
L=Hbef�Haftz 11 bits. Clearly this is a rough ball park
estimate. Furthermore, it supposes that the golf pro
practices the same shot over the years. Instead, the ball
can lie in different ways relative to the hole, and the
player must adjust to each condition. So, there are likely
multiple states rather than just one and the shot must be
learned separately for these conditions. Then the amount
learned would increase proportionally. Therefore, the
estimate in Figure 1 is indicated as a lower bound.

Why use information theory?
What recommends these information-theoretic measures
of behavior, as compared to any other statistical tool that

correlates states with actions? An important desirable for
any measure of task complexity is additivity: if a task is
composed of two independent subtasks, the complexity
of the combined task should be the sum of the individual
complexities. The definition for complexity in Eqn. (1)
satisfies this additivity constraint. For example, this
allows us to derive the complexity of the binary decision
tree in Figure 4b: The shortest route from state s1 to the
reward requires one correct 2-way decision followed by
two correct 3-way decisions. If the actions “left”, “right”
and “back” are equally probable to begin with, the

complexity is T = log22 þ 2 � log23 = 4.2 bits. A larger
tree with 64 end nodes, as used in a recent experimental
study [8], will have task complexity
T = log22 þ 5 � log23 = 8.9 bits.
Code and data
Code and data supporting this article can be found at
https://github.com/markusmeister/Learning_Fast_
And_Slow.
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