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Evolution of neuronal cell classes and types 
in the vertebrate retina

Joshua Hahn1,16, Aboozar Monavarfeshani2,16, Mu Qiao3,15, Allison H. Kao2, Yvonne Kölsch4, 
Ayush Kumar1, Vincent P. Kunze5, Ashley M. Rasys6, Rose Richardson7, 
Joseph B. Wekselblatt8, Herwig Baier4, Robert J. Lucas7, Wei Li5, Markus Meister3, 
Joshua T. Trachtenberg9, Wenjun Yan2, Yi-Rong Peng10, Joshua R. Sanes2 ✉ & 
Karthik Shekhar1,11,12,13,14 ✉

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly  
in their visual needs1. Retinal cell types may have evolved to accommodate these 
varied needs, but this has not been systematically studied. Here we generated and 
integrated single-cell transcriptomic atlases of the retina from 17 species: humans, 
two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, 
a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation  
of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine 
cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation 
across species related to evolutionary distance. Major subclasses were also conserved,  
whereas variation among cell types within classes or subclasses was more pronounced.  
However, an integrative analysis revealed that numerous cell types are shared across 
species, based on conserved gene expression programmes that are likely to trace back 
to an early ancestral vertebrate. The degree of variation among cell types increased 
from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that 
evolution acts preferentially to shape the retinal output. Finally, we identified rodent 
orthologues of midget RGCs, which comprise more than 80% of RGCs in the human 
retina, subserve high-acuity vision, and were previously believed to be restricted  
to primates2. By contrast, the mouse orthologues have large receptive fields and 
comprise around 2% of mouse RGCs. Projections of both primate and mouse 
orthologous types are overrepresented in the thalamus, which supplies the primary 
visual cortex. We suggest that midget RGCs are not primate innovations, but are  
descendants of evolutionarily ancient types that decreased in size and increased in 
number as primates evolved, thereby facilitating high visual acuity and increased 
cortical processing of visual information.

The ability to assess gene conservation among species has been of 
great value in multiple ways. It has revealed the evolutionary history 
of specific genes, highlighted crucial developmental and functional 
pathways, informed strategies for rational in vivo manipulations and 
helped guide choices of animal models that mimic human diseases3,4. 
Comparative genomics was enabled by advances in DNA sequencing, as 
well as statistical methodologies for sequence alignment and phyloge-
netic inference5. Advances in high-throughput single-cell RNA sequenc-
ing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have 

enabled related activity focused on determining the extent to which cell 
types, the functional units of complex tissues6,7, are conserved among 
species. Analysing patterns of cell-type conservation across phylogeny 
can serve as a conceptual foundation for reconstructing the evolution 
of cell types and identifying conserved developmental programmes8–10.

The neural retina, the portion of the brain that resides in the back of 
the eye, is well-suited for this type of analysis. It is arguably as complex 
as any other part of the brain, but its compactness and accessibility 
facilitate detailed investigations of structure and function11. Moreover, 
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unlike other brain regions (for example, the cerebral cortex), the basic 
structural blueprint of the retina is highly conserved among verte-
brates1. The retina contains five neuronal classes—photoreceptors, 
horizontal cells, bipolar cells, amacrine cells and retinal ganglion cells 
(RGCs)—and a resident glial class called Müller glia12. The cell somata are 
arranged in three nuclear layers separated by two plexiform (synaptic) 
layers (Fig. 1a) with information flowing through them in a defined 
direction: photoreceptors in the outer nuclear layer sense light and 
transmit visually evoked signals to interneurons in the inner nuclear 
layer; the interneurons (horizontal cells, bipolar cells and amacrine 
cells) process the information and supply it to RGCs in the innermost 
layer; and the RGCs send axons through the optic nerve to visual cen-
tres in the brain. Several of the neuronal classes can be subdivided 
into subclasses, and all classes comprise multiple types that differ in 
morphology, physiology, connectivity and molecular composition6,11–14. 
The specificity of connections between interneuronal and RGC types 
endows many RGC types with selective responsiveness to small subsets 
of visual features such as edges, directional motion and chromatic-
ity14,15. As a result of neural computations in the retina, the optic nerve 
transmits a set of parallel representations of the visual scene to the rest 
of the brain for further processing16,17.

Despite these conserved features, vertebrate species differ greatly 
in their visual needs1. Some species are diurnal, others are nocturnal; 
some are terrestrial, others are aquatic; and some mainly hunt, whereas 
others forage for colourful fruits. It is likely that variations in retinal 
cell types across species emerged during the course of evolution to 
serve these diverse needs. However, the evolutionary relationships 
among retinal cell types have not been mapped systematically. Here we 
address this gap by using single-cell transcriptomics to compare retinal 
cell classes, subclasses and types in 17 vertebrate species (Fig. 1b,c).

First, we show that the conserved functional and morphological 
character of the six cell classes is mirrored by marked cross-species 

similarities in gene expression. This principle extends to identified 
subclasses of photoreceptors, bipolar cells and amacrine cells. Tran-
scription factors implicated in cell and subclass specification are also 
evolutionarily conserved, pointing to common programmes of retinal 
development. Within each cell class, the transcriptomic variation across 
species increases with evolutionary time in a manner incompatible with 
purely ‘neutral’ evolution18. Second, we assessed the extent of evolu-
tionary variation among cell types within photoreceptors, horizontal 
cells, bipolar cells and RGCs, which have been comprehensively classi-
fied in mice19–21 and primates22–24. We identify numerous evolutionarily 
conserved types but find that variation is more extensive in RGCs than 
in other classes, suggesting that natural selection acts preferentially to 
shape the retinal output. Finally, we identify non-primate orthologues 
of midget RGCs, which account for more than 80% of RGCs in humans 
and are primarily responsible for high-acuity vision. To our knowledge, 
no counterparts of these cell types have previously been identified in 
non-primates, precluding mechanistic analysis of blinding diseases 
involving RGC loss, such as glaucoma. This orthology suggests that 
rather than appearing de novo in primates, midget RGCs evolved from 
cell types that were present in the common mammalian ancestor.

Retinal cell atlases of 17 species
Previously, we used scRNA-seq and snRNA-seq to study retinal cell 
types in five species: Mus musculus19,20,25,26 (hereafter referred to as 
‘mouse’), cynomolgus macaque22 (Macaca fascicularis), human23 (Homo 
sapiens), chick27 (Gallus gallus) and zebrafish28 (Danio rerio). For the 
present study, we generated atlases from 12 additional species: ferret 
(Mustela putoriusfuro), brown anole lizard (Anolis sagrei), deer mouse  
(Peromyscus maniculatus bairdii), tree shrew (Tupaia belangeri chinensis),  
pig (Sus domesticus), sheep (Ovis aries), cow (Bos taurus), opossum 
(Monodelphis domestica), marmoset (Callithrix jacchus), 4-striped 
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Fig. 1 | Conserved retinal structure across vertebrates. a, Cartoon of a 
section through a vertebrate retina showing the arrangement of its six major 
cell classes: photoreceptors (including rods (r) and cones (c)), horizontal cells 
(HC), bipolar cells (BC), amacrine cells (AC), retinal ganglion cells (RGC) and 
Müller glia (MG). The outer segments of rods and cones (OS), outer nuclear 
layer (ONL), inner nuclear layer (INL) and ganglion cell layer (GCL)—which 
contain cell somata—are indicated, as are the outer (synaptic) layer (OPL) and 

inner plexiform layer (IPL). b, Phylogeny of the 17 vertebrate species analysed  
in this work. The scale bar on the right indicates estimated divergence time.  
c, Sections from retinas of eight species immunostained for RBPMS (a pan-RGC 
marker), CHX10 (also known as VSX2) (a pan-bipolar cell marker) and AP2A  
(also known as TFAP2A) (a pan-amacrine cell marker) and stained with the nuclear 
stain DAPI. Scale bars, 25 µm. Figures are representative of images from three 
retinas.
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grass mouse (Rhabdomys pumilio), 13-lined ground squirrel (Ictidomys 
tridecemlineatus) and sea lamprey (Petromyzon marinus) (Fig. 1b,c). We 
also profiled around 185,000 nuclei from 18 human donors, thereby 
allowing us to identify over 30 more cell types than had been detected 
in the dataset analysed previously23, including 10 additional RGC types 
(Extended Data Fig. 1). To obtain sufficient numbers of bipolar cells and 
RGCs for comprehensive analysis, we enriched these classes in some 
collections (Extended Data Figs. 2–6 and Methods). We also collected 
cells without enrichment to ensure representation of all classes.

We used a standardized computational pipeline to normalize, correct 
batch effects, reduce dimensionality and cluster the data from each 
species separately29 (Methods). Cells that did not belong to the six 
canonical classes named above (for example, microglia or endothelial 

cells) were not analysed further. Biological replicates within each collec-
tion exhibited a high degree of concordance (Extended Data Figs. 3–6). 
The numbers of cells in each class for each species are summarized in 
Supplementary Table 1.

Molecular conservation of neuronal classes
We analysed the expression of class markers that have been validated 
in mice and primates; that is, genes that are co-expressed within a 
retinal cell class but exhibit little or no expression in other retinal 
cell classes19,20,22–26. Many showed similar expression patterns in 
other vertebrates (Fig. 2a). Using these markers, we assigned cells 
within each species to one of the six classes. We then assessed the 
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Fig. 2 | Class- and subclass-specific transcriptomic signatures. a, Heat map 
showing average expression of marker genes (columns) within each major  
cell class in 17 species (rows). Rows are grouped by cell class (left). Within each 
class, species are ordered as in Fig. 1b. Grey tiles indicate data that are missing 
owing to the absence of the corresponding orthologue in the species annotation.  
Colours indicating cell class are uniform in a–e. PR, photoreceptor. b, Cross- 
correlation matrix (Spearman) of pseudobulk transcriptomic profiles for  
the 16 jawed vertebrates. Rows and columns are grouped by class, and then 
ordered by phylogeny within a class. A total of 4,560 1:1 gene orthologues were 
used to calculate the correlation values. c, As in b, with rows and columns 
grouped by species instead of class. Matrices including lamprey are shown  
in Extended Data Fig. 7c,d. d, Left, uniform manifold approximation and 
projection (UMAP) embedding of integrated cross-species data, with points 

indicating class identity (left) or expression levels of subclass-specific markers 
(right). GAD1, a marker for GABAergic amacrine cells, is also expressed by some 
horizontal cells, and ISL1, a marker for ON bipolar cells, is also expressed by 
some RGCs, horizontal cells, and amacrine cells. Details of gene expression  
by species are shown in Extended Data Fig. 8d. e, Pairwise mean squared 
divergence of class-specific pseudobulk gene expression profiles between 
species ( y axis) increases with evolutionary distance, as estimated by 
substitutions per 100 bp (x axis). Data from mammals, chicken and lizard are 
included. Data including zebrafish are presented in Extended Data Fig. 7e.  
Solid lines represent power law ( y = axb) regression fits. Across the graphs, 
a ∈ [0.33, 0.47] and b ∈ [0.23, 0.35]. The coefficient of determination (R2) values 
range from 0.75 to 0.92.
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interspecies similarity of classes by comparing ‘pseudobulk’ transcrip-
tomic profiles on the basis of shared orthologous genes (Methods). A 
cross-correlation analysis among the 16 jawed vertebrates showed that 
transcriptomic similarity was driven by cell class identity rather than 
species identity—for example, bipolar cells of a given species are more 
closely related to bipolar cells of other species than they are to other 
classes from the same species (Fig. 2b,c and Extended Data Fig. 7a,b). 
Qualitatively similar results were obtained when lamprey—a jawless 
vertebrate—was included, although the signal was attenuated because 
fewer orthologous genes were available (Extended Data Fig. 7c,d). 
Thus, class identity dominates species identity in the transcriptional 
profile of a retinal cell.

We found that conserved genes within a cell class included many 
genes encoding known lineage-determining transcription factors, such 
as POU4F1 (RGCs), VSX2 (bipolar cells and Müller glia), OTX2 (photo-
receptors and bipolar cells), TFAP2A–C (amacrine cells), ONECUT1/2 
(horizontal cells) and CRX (photoreceptors)30 (Fig. 2a). This suggests 
that the genetic mechanisms underlying neurogenesis and fate speci-
fication of cell classes are evolutionarily ancient.

We assessed evolutionary trends by comparing mean squared 
expression divergence in pseudobulk profiles and evolutionary dis-
tance among pairs of species for each cell class. Expression divergence 
increased with evolutionary distance according to a power law that 
was qualitatively similar across all cell classes18 (R2 = 0.75–0.92) (Fig. 2e 
and Extended Data Fig. 7e). The trends were inconsistent with purely 
neutral transcriptome evolution, which predicts a linear relationship 
between average expression distance and evolutionary distance18,31. 
Although variation at the pseudobulk level can arise from changes in 
cell-type composition as well as from changes in gene expression in 
individual cell types, the finding that the variance of Müller glia—a sin-
gle cell type—was similar to that of more complex cell classes suggests 
that the variation at pseudobulk level is dominated by changes in gene 
expression in individual cell types. Thus, stabilizing and/or positive 
selection may contribute to the evolution of retinal cell class-specific 
transcriptomes.

Molecular conservation of neuronal subclasses
Classically, three of the retinal cell classes have been subdivided 
into subclasses12: photoreceptors comprise rods, specialized for 
low-light vision, and cones, which mediate chromatic vision. Nearly 
all amacrine cells use either GABA (γ-aminobutyric acid) or glycine 
as their neurotransmitter, and transmitter choice is highly correlated 
with key morphological features. Bipolar cells can be subdivided into 
those that depolarize and hyperpolarize to illumination—ON and OFF 
types, respectively. Within photoreceptors, amacrine cells and bipolar 
cells, cells from different species segregated on the basis of subclass 
identity and expressed orthologues of gene markers that have been 
well-characterized in mice (Fig. 2d and Extended Data Fig. 8). Thus, 
the evolutionary conservation of cell classes extends to subclasses.

Several transcription factor-encoding genes are expressed selectively 
in mouse retinal subclasses, including NRL and NR2E3 in rods, THRB and 
LHX4 in cones, MEIS2 in GABAergic amacrine cells, TCF4 in glycinergic 
amacrine cells, FEZF2 and LHX3 in OFF bipolar cells, and ISL1 and ST18 
in ON bipolar cells30. Some, including NRL, NR2E3, THRB and ISL1, have 
been implicated in the differentiation of the subclass that expresses 
them. The subclass-specific expressions of these transcription factors 
were broadly conserved across species (Extended Data Fig. 8a–d), sug-
gesting that the programmes specifying subclasses, like those specify-
ing classes, are evolutionarily ancient.

Tight conservation of outer retinal cell types
We next considered the conservation of neuronal types within classes. 
We began by analysing the evolutionary variation among mammalian 

bipolar cell types. In mice, there are 15 bipolar cell types: 6 OFF and 9 
ON bipolar cell types; one of the ON bipolar cell types receives input 
predominantly from rods (RBCs) and all others receive input predomi-
nantly from cones19.

Initial clustering of mammalian bipolar cells generated groups that 
were defined by species (Fig. 3a). The datasets were therefore reana-
lysed using an integration method that minimizes species-specific 
signals, thereby emphasizing other transcriptomic relationships29 
(Methods). This analysis intermixed the species while retaining struc-
ture that separates ON cone, OFF cone and ON RBCs from each other 
(Fig. 3b).

The integrated data revealed 14 groups of cells based on shared 
transcriptomic signatures (Fig. 3c). Even though species-specific 
cluster labels were not an input to the analysis, mouse bipolar cell 
types mapped to the integrated groups in a 1:1 fashion, with the sole 
exception of two closely related and sparsely represented types (BC8 
and BC9) that mapped to the same group (Fig. 3d and Extended Data 
Fig. 9a). We call these groups neuronal orthotypes although, as in the 
case of BC8 and BC9, they may sometimes contain small sets of related 
types. We named the bipolar cell orthotypes according to the mouse 
types; thus, the orthotype containing mouse BC1A is called oBC1A, 
and so on. Each bipolar cell orthotype was represented in nearly all 
mammals (Extended Data Fig. 9b) and 91% of mammalian bipolar cell 
clusters (172 out of 190) predominantly mapped specifically to a single 
orthotype (Fig. 3d, middle and Supplementary Table 3). We identi-
fied differentially expressed genes that distinguished the bipolar cell 
orthotypes (Fig. 3e).

The ‘mammalian’ orthotypes remained robust when mammalian, 
chick, lizard and zebrafish bipolar cells were integrated together. 
Although 32% fewer orthologous genes were available to guide the 
analysis, many bipolar cell clusters in chick, several in lizard and a few 
in zebrafish mapped to these mammalian orthotypes (Fig. 3d, right). 
However, two additional ‘non-mammalian’ orthotypes emerged, com-
prising OFF bipolar cells and ON bipolar cells from the non-mammals 
(Extended Data Fig. 9c–e and Supplementary Table 3). Attempts to find 
additional substructure in these non-mammalian bipolar cell ortho-
types were unsuccessful, probably because chick, lizard and zebrafish 
are nearly as evolutionarily distant from each other as they are from 
mammals. Nonetheless, the fact that several chick and lizard bipolar 
cell clusters map to the mammalian orthotypes suggests that some 
type-specific bipolar cell identities have been conserved for more than 
300 million years.

To illustrate the utility of the integration, we highlight two bipolar 
cell orthotypes: oRBC and oBC1B (Fig. 3f). RBCs receive most of their 
input from rods, as their name implies, and they connect with specific 
amacrine cell types rather than connecting directly with RGCs32. oRBC 
contained RBCs from all mammals (Fig. 3f). Mammalian RBCs were dis-
tinguished by the high expression of PRKCA and LRRTM4 (Fig. 3e), both 
of which are RBC-specific in mice19. RBCs also exhibit species-specific 
gene expression (Extended Data Fig. 9f). RBCs have been described in 
chicks and zebrafish, but these types did not map to oRBC.

The second orthotype represents a non-canonical OFF bipolar cell 
described in mice, named BC1B19 or GluMI33. The name BC1B reflects its 
transcriptional similarity to BC1A. However, unlike canonical bipolar 
cells, BC1B retracts its dendrite during early postnatal life and there-
fore has no direct connection with mature photoreceptors19. No BC1B 
equivalent has yet been identified in other species, probably because it 
lacks this connection. However, 10 of the 13 mammals profiled here, as 
well as chicks and lizards, contained a bipolar cell cluster that mapped 
exclusively to oBC1B (Fig. 3f), whereas two mammals (Peromyscus and 
ferret) contained a cluster that mapped to both oBC1A and oBC1B. Thus, 
transcriptomics enabled the identification of a potentially conserved 
cell type that would have been difficult to identify by conventional 
morphological methods; its type-specific markers can now be used 
to seek morphological and physiological validation.
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We repeated the orthotype analysis for photoreceptors and horizon-
tal cells, which are less diverse classes than bipolar cells. As noted above, 
photoreceptors are divided into two subclasses, rods and cones. Most 
mammals have a single rod type and two cone types, tuned to respond 
best to short wavelengths (S cones, also known as blue cones) and 
medium wavelengths (M cones, also known as green cones), respec-
tively. However, many primates have a third cone type (L cones, also 
known as red cones) that is sensitive to longer wavelengths34. Orthotype 
analysis separated mammalian M and L cones from S cones effectively, 
with the few exceptions probably being due to insufficient cell num-
bers (Fig. 3g). Similarly, most mammals have two horizontal cell types, 
called H1 and H2—although mice and perhaps other rodents—have 

only a single horizontal cell type. Again, orthotype analysis separated 
horizontal cells into two groups (Fig. 3h). Many non-mammalian ver-
tebrates are more complex in these respects, with 4 or 6 photorecep-
tor types and 4 horizontal cell types in birds (including chicken) and 
fish27,34,35 (including zebrafish); these species mapped less well onto 
the mammalian orthotypes.

Retinal ganglion cell orthotypes
We next performed orthotype analysis on RGCs, the only output neu-
rons in the retina. We identified 21 RGC orthotypes in mammals and 
found differentially expressed genes that distinguished them (Fig. 4a–c 
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Extended Data Fig. 9e. e, Dot plot showing differentially expressed genes 
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matrix showing mapping of mammalian photoreceptor (g) and horizontal cell 
(h) types to orthotype. Format as in d, centre.
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and Extended Data Fig. 10a). Eighty-one per cent of mammalian RGC 
clusters (329 out of 408) mapped predominantly to a single orthotype 
(Fig. 4d). In species that contain more RGC types than orthotypes, tran-
scriptomically similar RGC clusters mapped to the same orthotype. As 
was the case for bipolar cells, RGC orthotypes remained stable when 
lizard, chick and zebrafish were included in the integration (Fig. 4d, 
right), but were supplemented by an additional orthotype dominated 

by non-mammalian species (Extended Data Fig. 10b–d and Supple-
mentary Table 3).

To test the reliability of orthotype analysis for RGCs, we searched 
for orthologues of an evolutionarily ancient set of RGC types called 
intrinsically photosensitive RGCs (ipRGCs). ipRGCs contain the pho-
topigment melanopsin (encoded by OPN4), which enables them to 
generate visually evoked signals without input from photoreceptors36. 
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encoding genes39 in orthotypes. Representation as in Fig. 3e.
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They mediate crucial non-image-forming visual functions, such as 
circadian entrainment and the pupillary light reflex. ipRGCs have been 
detected in the retinas of diverse vertebrate orders, including several of 
the species profiled here, generally on the basis of OPN4 expression37. 
ipRGCs also express the transcription factor-encoding gene EOMES 
(also known as TBR2), although some EOMES-expressing RGCs have not 
been functionally validated as ipRGCs. RGCs in two orthotypes, oRGC8 
and oRGC9, expressed OPN4 (Extended Data Fig. 10e). oRGC9 contained 
five mouse RGC types, three of which were the ipRGC types M1a, M1b 
and M2, which express the highest levels of melanopsin. oRGC8 con-
tained the paralogous types, MX and C8. Overall, out of 35 clusters 
from 11 species in these 2 oRGCs, 25 expressed OPN4 and 33 expressed 
EOMES. OPN4-expressing RGC types from chick and lizard also mapped 
to these orthotypes. Thus, cross-species integration captures an RGC 
group with a conserved physiological property.

We showed recently that 45 molecularly defined mouse RGC types, 
many of which map to physiologically and morphologically defined 
mouse RGC types38, can be grouped into subsets defined by selectively 
expressed transcription factor-encoding genes20,39,40. Some of these 
transcription factor-encoding genes (for example, EOMES, TBR1 and 
NEUROD2) have been implicated in RGC development41–44. Although 
many RGC subsets defined according to transcription factor-encoding 
gene expression align with morphologically or functionally defined 
RGC subclasses (for example, EOMES+ ipRGCs and Tbr+ T-RGCs), oth-
ers are novel (for example, Irx3+ RGCs and Bnc2+ RGCs). The mapping 
of mouse RGC types to RGC orthotypes mirrored these transcription 
factor-defined subsets (Fig. 4e, left), and subset-defining transcrip-
tion factor expression patterns were recovered in a large propor-
tion of species (Fig. 4e, right). These results suggest that as noted 
above for photoreceptor, bipolar cell and amacrine cell subclasses, 
it may be possible to classify RGCs into evolutionarily conserved  
subclasses.

Although orthotypes for all neuronal classes were represented in 
all mammals, the number of neuronal types within a species varied 
over a greater range for RGCs (29 ± 10 (mean ± s.d.)) than for other 
classes (photoreceptors, 3–4; horizontal cells, 1–2; and bipolar cells, 
14 ± 2) (Extended Data Figs. 1 and 3–6). Similarly, RGC orthotypes were 
associated with more types within a species (1.62 ± 1.39, corresponding 
to a coefficient of variation (CV) of 0.86) than other classes: 1 ± 0.05, 
CV = 0.05 for photoreceptors; 1.1 ± 0.25, CV = 0.22 for horizontal cells; 
and 1.13 ± 0.44, CV = 0.4 for bipolar cells (amacrine cells are poorly 
annotated and cannot be integrated across species at this time).  
Thus, the extent of variation within cell classes increases systematically 
from outer to inner retina in the order photoreceptor < horizontal 
cell < bipolar cell < RGC.

Orthologues of midget and parasol RGCs
In most species studied to date, no RGC type comprises more than about 
10% of all RGCs. By contrast, the retina of many primates—including 
humans—is dominated by two closely related RGC types, ON and OFF 
midget RGCs, named for their diminutive dendritic trees45. Together 
they account for more than 80% of all RGCs in macaque and human, 
with similar abundance in fovea and periphery22,23. However, despite 
their importance for vision, no non-primate orthologues of midget 
RGCs have been found, and our own previous comparison of mouse and 
macaque primate RGCs did not find any correspondence22. Similarly, 
attempts to find orthologues of the next most abundant primate RGC 
types, ON and OFF parasol RGCs (5–10% of all RGCs) have remained 
inconclusive2.

We used orthotypes to revisit this issue. Each of the four abundant 
primate types mapped to a distinct orthotype (oRGC1, oRGC2, oRGC4 
and oRGC5), and each of these orthotypes contained the correspond-
ing cell type from both fovea and periphery of human, macaque and 
marmoset (Fig. 5a and Extended Data Fig. 11a). Remarkably, the mouse 

RGC types mapping to these orthotypes included a set of four related 
types called α-RGCs46; of the five mouse cell types mapping to the  
ON and OFF midget- and OFF parasol-containing orthotypes, three 
were α-RGCs. A resemblance of parasol RGCs to α-RGCs has been sug-
gested previously22,47, but the correspondence was unexpected for 
midget RGCs, because α-RGCs are present at low abundance (around 
2%) and are among the largest mouse RGCs. Nonetheless, several lines 
of evidence support the orthology between primate midgets and para-
sols, and the mouse α-RGC types.

First, the four α-RGC types can be distinguished on the basis of 
response polarity (ON versus OFF) and response kinetics (sustained 
(s) versus transient (t)): αONs, αOFFs, αONt and αOFFt46. Mouse αONs 
and αOFFs mapped to ON and OFF midgets, respectively, and mouse 
αONt and αOFFt mapped to ON and OFF parasols, respectively. Second, 
midgets and parasols exhibit sustained and transient light responses, 
respectively, that match the kinetics of their mouse orthologues46,48. 
Third, dendrites of matched types arborize in homologous sublaminae 
of the inner plexiform layer, with the parasol and α-transient types 
nearer the centre of the layer than the midget and α-sustained types49. 
Fourth, morphological studies have identified the bipolar cell types that 
innervate midgets, parasols and α-RGCs50–52. In each case, the primate 
bipolar cell type that provides the majority of excitatory input to the 
midget or parasol RGC type is a member of the same bipolar cell ortho-
type as a mouse bipolar cell type that provides substantial input to the 
corresponding α-RGC type. Thus, although none of these metadata 
were provided explicitly, the integration matched types correctly based 
on their polarity, response kinetics, dendritic lamination and inputs 
(Fig. 5b). In addition, orthologues exhibit similar response properties: 
midget RGCs and sustained α-RGCs primarily report on contrast and 
are minimally feature-selective, whereas parasol RGCs and transient 
α-RGCs, are motion-sensitive53,54.

We assessed the strength of the primate midget and parasol to mouse 
α-RGC correspondence with two additional statistical approaches. 
The first is factorized linear discriminant analysis55 (FLDA) (Extended 
Data Fig. 12a and Supplementary Note 2). Given single-cell transcrip-
tomic data from cells that carry multiple categorical attributes, FLDA 
attempts to factorize the gene expression data into a low-dimensional 
representation in which each axis captures the variation along one 
attribute while minimally co-varying with other attributes. We applied 
FLDA to project primate midgets and parasols and mouse α-RGCs 
onto a 3D space whose three axes represent species (mouse–primate), 
kinetics (sustained–transient) and polarity (ON–OFF). FLDA generated 
a projection in which the relative arrangement of the four primate and 
the four mouse cell types was consistent with their attributes (Fig. 5c 
and Extended Data Fig. 12b). We then tested whether α-RGCs were 
a better transcriptomic match to midgets and parasols than other 
mouse RGC types carrying similar attributes. For this purpose, we 
identified a set of 20 mouse RGC types for which polarity (ON–OFF) 
and kinetics (sustained–transient) are known (Supplementary Table 4). 
We matched all possible 432 combinations of 4 drawn from this set 
with the midgets and parasols, calculated the FLDA projections, and 
ranked them on the basis of the magnitude of the variance captured 
by FLDA along the polarity and kinetics axes (Extended Data Fig. 12c). 
The best match comprised all four α-RGC types, and the next three 
matches contained three α-RGC types plus one other type (Extended 
Data Fig. 12d).

The second statistical method, geometric analysis of gene expression 
(GAGE), focuses on the geometric arrangement of the cluster means 
of RGC types in gene expression space (Supplementary Note 3). The 
cluster centroids for the macaque midget and parasol types form a 
four-cornered shape in the space of gene expression values. GAGE 
tests whether there are groups of mouse RGC types that form that 
same shape, except for a linear translation corresponding to species 
differences (Fig. 5d, inset). For every combination of four mouse cell 
types in the set described above, we scored how well the mouse shape 
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matches the macaque shape (Methods). The four α-RGC types pro-
duced the strongest match by a large margin, followed by several com-
binations containing three α-RGC types (Fig. 5d). Finally, we considered 
matches for all 3,575,880 possible combinations of 4 drawn from the 45 

transcriptomically defined mouse RGC types20. The four α-RGC types 
with the correct matching of polarity and kinetics with the MGCs and 
PGCs scored in second place out of all such combinations. The top 
match was biologically implausible (see Extended Data Fig. 12e).
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Fig. 5 | Mammalian orthologues of midget and parasol RGCs. a, Confusion 
matrix showing RGC clusters from different species that map specifically to 
oRGC1, oRGC4, oRGC5 and oRGC2, which contain OFF and ON midget RGCs 
(MGCs) and OFF and ON parasol RGCs (PGCs). Representation as in Fig. 3f. 
Column names corresponding to primate midget and parasol types are shown 
in red, and mouse α-RGC types are shown in blue. b, Schematic delineating 
morphological and physiological similarities between primate and midget 
RGCs and their α-RGC orthologues. Orthotypes (OTs) of each pair as well as  
the orthology among bipolar cell types that innervate them are also shown. 
Morphologies of neuronal types were created on the basis of published data 
(Supplementary Note 1). Within each pair, the left column corresponds to 
primate types and the right column corresponds to mouse types. c, FLDA 
projection of the scRNA-seq data for primate midget and parasol types and 
mouse α-RGC types onto the corresponding 3D space, with axes representing 

species, polarity and kinetics (see Supplementary Note 2). d, Matching MGCs 
and PGCs to mouse types by GAGE. Inset, given sets of mouse and primate  
RGC types, the model fits the arrangement of their cluster centroids in gene 
expression space by assuming a shape that is simply shifted to the other species 
via a linear translation. Symbols mark the four response types: circle, sustained;  
square, transient; open, ON; filled, OFF. The graph is a histogram of the fraction 
of explained variance showing for each proposed combination of four mouse 
cell types how well the resulting shape fits the macaque RGC geometry. The red 
bar shows the set of four α-RGC types. Green bars show combinations containing  
three α-RGC types. Grey bars, remaining sets of four mouse cell types as shown 
in Supplementary Table 4. e, Relative proportion of OFF and ON midget RGC 
orthologues in mammalian species based on frequencies of cells in oRGC1 and 
oRGC4.
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Together, these results provide strong support for the orthology 
of primate midget and parasol RGCs with mouse α-RGCs, suggesting 
that midget and parasol RGCs are not primate innovations as they have 
been considered to be. Moreover, the presence of midget and parasol 
orthologues in all the mammals studied here (Fig. 5e and Extended Data 
Fig. 11b) suggests that they are likely to have evolved from antecedent 
types present in the mammalian common ancestor.

For midget RGCs, we suggest a relationship between their marked 
expansion in the primate lineage (Fig. 5e) and the evolution of visual 
processing. In primates, the principal retinorecipient region is the dor-
solateral geniculate nucleus (dLGN), whereas in mice it is the superior 
colliculus56. Midget RGCs project almost exclusively to the dLGN57. In 
mice, anterograde16 and retrograde58,59 tracing studies suggest that 
α-RGCs are overrepresented among those RGCs that project to the 
dLGN (two- to fourfold in ref. 53). The dLGN provides the dominant 
visual input to the primary visual cortex, whereas superior colliculus 
projects in large part to areas that control reflexive motor responses, 
including eye movements60. In primates, complex visual processing 
occurs largely at the cortical level, and may be best served by the rel-
atively unprocessed, high-acuity rendering of the visual world that 
midget RGCs provide. The modest loss in response time in this system 
is presumably compensated by the greater flexibility in response type. 
As the cortex has a key role in primate vision, midget-like RGCs already 
present in the mammalian ancestor may have decreased in receptive 
field size and increased in number to facilitate this flexibility as pri-
mates evolved.

Conclusions
We integrated single-cell transcriptomic cell atlases of the retina from 
17 vertebrate species and used them to assess the extent to which cell 
classes, subclasses and types have been conserved through vertebrate 
evolution. Our main results and the conclusions we draw from them are 
as follows. First, retinal cell classes and subclasses are highly conserved 
at the molecular level through evolution, mirroring their structural 
and functional conservation. The pattern of gene expression varia-
tion in classes is inconsistent with neutral transcriptome evolution, 
suggesting that selective pressures shape the cellular repertoire of the 
retina. Second, although greater cross-species variation exists at the 
level of cell types, numerous conserved types can be detected using an 
analytical framework that identifies transcriptomic groups, which we 
call orthotypes. Third, evolutionary divergence among types is more 
pronounced for RGCs than for other retinal classes, suggesting that 
the outer retina is built from a conserved parts list, whereas natural 
selection acts more strongly on diversifying those neuronal types that 
transmit information from the retina to the rest of the brain. Fourth, 
conserved transcription factors at all three levels (class, subclass and 
type) suggest that developmental programmes for the specification 
of retinal neurons have an ancient origin. Fifth, midget and parasol 
RGCs, which together comprise more than 90% of human RGCs, have 
orthologues in other mammalian species, suggesting that these primate 
cell types are derived from the expansion and modification of types 
present more than 300 million years ago in the retina of the last com-
mon ancestor of mammals. In mice, the orthologues are a numerically 
minor set of types called α-RGCs. The marked (approximately 40-fold) 
difference in abundance of midget orthologues between mice and 
humans correlates with the greater prominence of visual processing 
in the primate cortex. Knowing the orthologues of midget and parasol 
RGCs in several accessible models will aid efforts to slow their degen-
eration in blinding diseases such as glaucoma.
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Methods

Ethical compliance
Human eyes were obtained post-mortem at a median of 6 h from death 
either from Massachusetts General Hospital via the Rapid Autopsy 
Program or from The Lion’s Eye Bank in Murray, UT. Acquisition and 
use of post-mortem human tissue samples were approved by either 
the Institutional Review Board of the University of Utah (protocol 
IRB_00010201), or the Human Study Subject Committees at Harvard 
(Dana Farber/Harvard Cancer Center protocol no. 13-416), and pro-
cedures were compliant with the National Human Genome Research 
Institute policies. All donors were confirmed to have no history or 
clinical evidence of ocular disease or intraocular surgery. Informed 
consent was obtained from all donors per IRB protocols. Pig, cow and 
sheep eyes were obtained, on average, 1 h after death from an abattoir  
located in West Groton, MA. Other animal eyes were obtained 
from animal colonies maintained at Brandeis University (ferret), 
California Institute of Technology (tree shrew), Harvard University  
(Peromyscus), MIT (marmoset), NIH (squirrel), University of Manchester,  
UK (Rhabdomys), University of Georgia (lizard) and University of  
California, Los Angeles (lamprey and opossum). Animals of both sexes 
were included when possible. Animal experiments conducted in the 
USA were approved by the Institutional Animal Care and Use Com-
mittees (IACUCs) in each location. Rhabdomys tissue was collected 
in accordance with the Animals, Scientific Procedures Act of 1986 
(UK) and approved by the University of Manchester ethical review  
committee.

Number of animals and cells or nuclei used
The number of animals used, biological replicates sequenced, and 
high-quality cells or nuclei collected are indicated for each species in 
Extended Data Figs. 1 and 3–6. The number of cells or nuclei recovered 
for each class within each species is indicated in Supplementary Table 1. 
See also ‘Statistics and reproducibility’.

snRNA-seq
Nuclei isolation and sorting. For isolation of nuclei, frozen retinal 
tissues were homogenized in a Dounce homogenizer in 1 ml lysis buffer 
consisting of 0.1% NP-40 in a solution containing 10 mM Tris, 1 mM 
CaCl2, 8 mM MgCl2, 15 mM NaCl, 0.1 U µl−1 RNAse inhibitor (Promega 
RNasin Ribonuclease Inhibitor N2615), and 0.02 U µl−1 DNAse (D4527, 
Sigma Aldrich). The homogenized tissue was passed through a 40-µm 
cell strainer. The filtered nuclei were pelleted at 500 rcf for 5 min,  
resuspended in staining buffer (Tween 0.02% and 2% BSA in the Tris 
base buffer) and stained with anti-NEUN (1:300, Sigma FCMAB317PE 
or MAB377A5) and anti-CHX10 (1:600, Santa Cruz Biotechnology  
sc-365519 AF647) for 12 min at 4 °C.

Following staining, nuclei were centrifuged, resuspended in sorting 
buffer (2% BSA in the Tris base buffer), and counterstained with DAPI 
(1:1,000). The NEUN+ and CHX10+ nuclei were sorted into separate 
tubes using BD FACSDiva v8.02 (Extended Data Fig. 2a–c), pelleted 
again at 500 rcf for 5 min, resuspended in 0.04% non-acetylated BSA/
PBS solution, and adjusted to a concentration of 1,000 nuclei per µl. 
The integrity of the nuclear membrane and presence of non-nuclear 
material were assessed under a bright-field microscope (Extended 
Data Fig. 2d,e) before loading into a 10X Chromium Single Cell Chip 
(10X Genomics) with a targeted recovery of 8,000 nuclei per channel.

Library preparation. Single-nuclei libraries were generated with  
either Chromium 3′ V3, or V3.1 platform (10X Genomics) following the  
manufacturer’s protocol. In brief, single nuclei were partitioned into 
Gel-beads-in-Emulsion where nuclear lysis and barcoded reverse tran-
scription of RNA would take place to yield cDNA; this was followed by 
amplification, enzymatic fragmentation and 5′ adapter and sample 
index attachment to yield the final libraries. Libraries were sequenced 

on an Illumina NovaSeq at the Bauer Core Facility at Harvard University. 
Sequencing data were demultiplexed and aligned using Cell Ranger 
software (version 4.0.0, 10X Genomics).

Histology
Whole eyes were fixed in 4% paraformaldehyde (in PBS) for 1–2 h and 
then transferred to PBS. Either whole retinas or 8-mm punches of cen-
tral retina were dissected out and sunk in 30% sucrose in PBS overnight 
at 4 °C, before being embedded in tissue freezing medium and sec-
tioned coronally at 20 µm in a cryostat. Sections were mounted onto 
coated slides. Slides were incubated for 1 h with 5% donkey serum (with 
0.1% Triton X-100) at room temperature, then overnight with primary 
antibodies (1:500 RBPMS (PhosphoSolutions 1832-RBPMS); 1:400 
CHX10 (Novus Biologicals NBP1-84476); 1:50 AP2A (DSHB 3B5)) at 4 °C, 
and finally for 2 h with secondary antibodies in PBS at room tempera-
ture. Images were acquired on Zeiss LSM 900 confocal microscopes 
with 405, 488, 568 and 647 nm lasers, and processed using Zeiss ZEN 
software suites.

Preprocessing of transcriptomic data
We used Cellranger (v7.0, 10X Genomics) to align the scRNA-seq and 
snRNA-seq datasets, following the manufacturer’s instructions. For 
each species, sequencing reads were demultiplexed into distinct sam-
ples and the.fastq.gz files corresponding to each sample were aligned to 
reference transcriptomes to obtain binary alignment map (.bam) files. 
The reference transcriptomes used are listed in Supplementary Table 5. 
To include both exonic and intronic reads in the quantification of gene 
expression for each sample, regardless of cellular or nuclear origin, 
we applied velocyto61 to the corresponding.bam files. This generated 
two separate gene expression matrices (GEMs) (genes × cells) for each 
sample, corresponding to ‘spliced’ and ‘unspliced’ reads. The two GEMs 
were summed element by element to obtain the ‘total’ GEM for each 
sample. For each species, GEMs from different samples were combined 
(column-wise concatenated) to yield a species GEM.

Computational analysis
Analysis of the GEMs was performed in R. Our workflow was based on 
Seurat v4.3.0 for single-cell analysis developed and maintained by the 
Satija laboratory29,62 (https://satijalab.org/seurat/) and includes sev-
eral packages used for statistical calculations and data visualizations 
including MASS v7.3.60, pvclust v2.2.0, reshape2 v1.4.4, stats v4.3.0, 
ggplot2 v3.4.2, dendextend v1.17.1 and ggdendro v0.1.23 We describe 
the analysis steps here at a high level. We have also made the analysis 
scripts available via Zenodo (https://zenodo.org/record/8067826) 
and on our Github page (https://github.com/shekharlab/RetinaEvo-
lution).

Segregation of major retinal cell classes. Data from each species 
were separately analysed through a clustering procedure to identify 
high-quality cells, and segregate the major cell classes (photorecep-
tor, bipolar cell, horizontal cell, amacrine cell, RGC and Müller glia). In 
brief, GEMs from different replicates were combined, and transcript 
counts in each cell was normalized to a total library size of 10,000 and 
log-transformed (X → log (X + 1)). We identified the top 2,000 highly 
variable genes and applied principal components analysis to factorize 
the submatrix corresponding to these highly variable genes. Using 
the subspace corresponding to the top 20 principal components, we 
built a k-nearest neighbour graph on the data, and then clustered with 
a resolution parameter of 0.5 using Seurat’s FindClusters function. 
The same principal components were used to embed the cells onto 
a 2D visualization using the uniform manifold approximation63. The 
2D embeddings were solely used to visualize clustering structure and 
gene expression patterns post hoc.

Each cluster was assigned to one of the six major retinal cell 
classes based on expression of orthologues of canonical markers 
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characterized in mice25: photoreceptors (Arr3, Rho and Crx), horizon-
tal cells (Calb1, Onecut1, Onecut2 and Lhx1), bipolar cells (Vsx1, Otx2 
and Grik1), amacrine cells (Gad1, Gad2, Tfap2a, Tfap2b and Tfap2c), 
RGCs (Rbpms, Nefl, Nefm and Slc17a6) and Müller glia (Glul, Apoe and 
Rlpb1). Clusters that mapped to other cell types found at much lower 
frequency (such as endothelial cells or microglia) or that contained 
low quality cells were not considered further. The number of cells of 
each class in each species is indicated in Supplementary Table 1. We 
note that because many experiments were designed to enrich certain 
classes (RGCs or bipolar cells), the relative frequencies do not reflect 
endogenous values.

Integration and clustering to identify species-specific types for 
photoreceptors, horizontal cells, bipolar cells and RGCs. We sepa-
rated photoreceptors, horizontal cells, bipolar cells and RGCs within 
each species, and clustered them independently using the following 
procedure. After subsetting the data by class, cells with abnormally 
high (>mean + 2 × s.d.) or low (<mean − 2 × s.d.) counts were removed. 
We also removed replicate batches that contained the class of inter-
est at a frequency less than 50 cells. We split the cells by replicate 
ID and used Seurat’s integration pipeline to remove batch effects,  
reduce dimensionality and cluster the data in a shared low-dimensional 
integrated space. We selected the top 20–25 latent variables  
in the integrated space to identify clusters and generate 2D UMAP  
visualizations.

We initially deliberately overclustered the data using a resolution 
parameter of 1.1. Clusters were then merged or pruned as follows: for 
each cluster, we calculated differentially expressed marker genes, and 
these markers were inspected to determine if clusters should be merged 
or removed. Some clusters were also removed if their top differentially 
expressed markers were widely expressed in several clusters, if they had 
lower RNA counts compared to other clusters, or if several of the top 
differentially expressed markers were canonical markers for contami-
nant cell classes. If more than 20% of cells were removed via pruning, 
the filtered data was subjected to another round of integration and 
clustering. Two or more clusters were merged if a differential expression 
test failed to find markers that sufficiently distinguished the clusters.

We applied these steps to define photoreceptor, horizontal cell, 
bipolar cell and RGC clusters for species initially reported in this paper: 
Peromyscus, ferret, opossum, brown anole lizard, cow, sheep, pig, 
13-lined ground squirrel, 4-striped grass mouse, marmoset and tree 
shrew. Individual clusters correspond to individual cell types, and in 
some cases, to small groups of closely related types. For the sake of 
consistency, we also applied the same procedure to photoreceptor, 
horizontal cell, bipolar cell and RGC data of species published else-
where (mouse19,20, macaque22, human23, zebrafish28 and chick27). In all 
cases, our clusters were largely consistent with published annotations, 
and we therefore labelled these clusters based on their published 
labels.

Selection of shared orthologous genes. Orthologous genes were 
identified using orthology tables via Ensembl BioMart (https://useast.
ensembl.org/info/data/biomart/index.html). Using mouse as a refer-
ence species, pairwise orthology tables were generated between mouse 
and every other species. These orthology tables contained information 
about the number of predicted orthologues for every mouse gene 
within each species. Mouse genes that had a 1:1 orthologue in every 
other species were retained as the set of orthologous features, with the 
exception of zebrafish. Due to a whole gene duplication, zebrafish has 
several paralogous pairs of genes (for example, rbpms2a and rbpms2b) 
known as ‘ohnologs’64. The prevalence of ohnologs results in a paucity 
of 1:1 orthologues. To address this issue, we collapsed each ohonolog 
pair by summing over their expression (for example, rbpms2a and 
rbpms2b to rbpms2). If the ohnologs were the only orthologues of a 
gene, then the composite gene was regarded as the 1:1 orthologue for 

further analysis. Overall, we found 1,905 1:1 orthologues among all 
17 species, 4,560 among the 16 jawed vertebrates (that is, omitting 
lamprey) and 6,693 among the 13 mammals. The number of shared 
orthologues decreased with evolutionary distance, and we found fewer 
orthologues shared between mammals and non-mammalian verte-
brates than among mammals.

Visualization of cell classes. For an alternative view on the cell classes, 
we subsampled each cell class to 200 per species, and then combined 
the GEMs. The resulting GEMs were integrated using Seurat using each 
species as a ‘batch’. Note that batch correction was not performed for 
samples within a species, nor was cell class information provided to the 
integration. The resulting integrated data was visualized on a UMAP 
(Fig. 2d and Extended Data Fig. 8). Dendrograms for the cell-averaged 
profiles were constructed using hclust (package stats), and then plot-
ted in a circular representation using the circlize_dendrogram function 
(package dendextend) (Extended Data Fig. 7a).

Evolutionary variation of pseudobulk transcriptomes. For each spe-
cies, we computed cell-averaged (or pseudobulk) gene expression 
vectors for the six major cell classes (photoreceptor, horizontal cell, 
bipolar cell, amacrine cell, RGC and Müller glia). Each pseudobulk vec-
tor was z-scored (subtract mean and divide by variance) prior to sub-
sequent computations. The mean squared expression distance (MSD) 
between two species for a cell class was calculated as the euclidean 
distance between the corresponding pseudobulk vectors 

∣∣ ∣∣a b a bMSD( , ) = − 2 . To analyse evolutionary trends within a class 
(Fig. 2e), we compared a bMSD( , )  to evolutionary time separating the 
corresponding species t a b( , ) . To estimate the evolutionary time for 
each pair of species, we downloaded a phylogenetic tree of vertebrate 
species from the UCSC Genome Browser at http://hgdownload.cse.
ucsc.edu/goldenpath/hg19/multiz100way/65. Evolutionary time sepa-
rating two pairs of species was assumed to be the branch length between 
the corresponding nodes of this tree, measured in units of substitutions 
per 100 bp of neutrally evolving sites. Branch lengths were computed 
using the Environment for Tree Exploration toolkit66. We then fit the 
MSD versus t using a power law model, atMSD = b introduced earlier18, 
which is reported in Fig. 2e and Extended Data Fig. 7e. We also attempt-
ed to fit the data with a linear model a btMSD = +  and an Ornstein– 
Uhlenbeck model a eMSD = (1 − )bt−  but both produced fits with lower 
R2 than the power law model.

Data integration and identification of orthotypes. We identified 
orthotypes separately for photoreceptors, horizontal cells, bipolar 
cells and RGCs. In each case, we followed the following steps: (1) Within 
each species, the corresponding GEM for each type was downsampled 
cluster-wise to include no more than 200 cells per cluster. This ensures 
equitable representation of the transcriptomic clusters indicated in 
Extended Data Figs. 3–6; (2) the downsampled species-specific GEMs 
were combined along the set of shared gene orthologues, normalized to 
10,000 counts per cell, and log-transformed; (3) 2,000 highly variable 
genes were selected within each species, and features that were repeat-
edly variable were used for anchor finding, integrated dimensionality 
reduction, and clustering of GEMs based on the Seurat pipeline29. The 
resulting clusters were called orthotypes. A resolution of 0.5 was used 
for the clustering. Transcriptomically proximal orthotypes based on a 
gene expression dendrogram that contained distinct subsets of species 
were merged. Note that other than the downsampling step, species 
cluster IDs were not used to influence the selection of variable genes, 
integration or clustering steps.

Integrating mammalian and non-mammalian datasets. In several 
cases, cells from non-mammalian species formed orthotypes sepa-
rate from those containing cells from mammalian species. We believe 
that this result largely reflects three issues. First, the representation 

https://useast.ensembl.org/info/data/biomart/index.html
https://useast.ensembl.org/info/data/biomart/index.html
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/multiz100way/


of species classes in our study is skewed: 13 mammals vs 1 reptile, 1 
bird and 1 fish. Second, non-mammalian species are generally more 
evolutionarily distant from each other than mammalian species are 
from each other. Third, the number of 1:1 orthologous genes decreas-
es as more distant species are co-analysed, which further compro-
mises integration due to the loss of features. Including additional 
non-mammalian species and or improving computational methods 
may lead to greater inclusion of non-mammalian cell types in the cur-
rent mammalian orthotypes.

Statistics and reproducibility
Based on the cluster-informed downsampling procedure described 
above, n = 32,350 cells of multiple cell classes were used to generate 
Fig. 2d, and 38,366 bipolar cells, 61,161 RGCs, 13,605 photoreceptors 
and 5,405 horizontal cells were used to generate the orthotype results 
shown in Figs. 3 and 4. The mammalian orthotypes remained robust 
to different downsampling trials (see below), as well as the inclusion 
of non-mammals in the analysis (refer to Fig. 3d and Extended Data 
Fig. 9d for bipolar cells, and Fig. 4d and Extended Data Fig. 10c for 
RGCs). Across downsampling trials, we found that cells mapping to 
a given orthotype were present in the same cluster >90% of the time. 
As the orthotypes are the result of a clustering of the integrated data, 
the number of orthotypes depends on the resolution parameter. We 
varied the clustering resolution and tracked the number of orthotypes, 
the adjusted Rand index (ARI) of the clustering, and the number of 
species-specific orthotypes. The bipolar cell orthotypes were robust 
across a wide range of resolution (0.4–1.5), as indicated by a stable num-
ber of orthotypes (16–21), high values of the ARI (0.88–0.96), and very 
few, if any, species-specific orthotypes. The RGC orthotypes exhibited 
higher sensitivity to the resolution parameter over the same range, with 
the number of clusters ranging from 26–46. For resolution values over 
1, moret than 5 species-specific orthotypes were consistently observed 
across trials. However, ARI values were reasonably high across values 
tested (0.625–0.849). The results presented in the main text are for a 
resolution of 0.5.

We repeated the orthotype analysis for bipolar cells using three 
alternative integration methods: Harmony67, Liger68 and scVI69. All 
three methods produced results consistent with those from Seurat, 
but they generated several additional species-specific orthotypes and 
also did not resolve some known distinctions among bipolar cell types. 
We therefore used Seurat to obtain the results presented in the text.

Factorized linear discriminant analysis
FLDA seeks a low-dimensional factorization of high-dimensional gene 
expression data from cells with multiple categorical attributes such that 
each axis of the low-dimensional space captures the variation along 
one attribute while minimizing co-variation with other attributes. The 
mathematical derivations underlying FLDA are described in a previous 
paper55, and are summarized in Supplementary Note 2. In this study, we 
applied FLDA to factorize transcriptomic data for RGCs carrying three 
categorical attributes: response polarity (ON vs OFF), response kinetics 
(transient vs sustained) and species (mouse vs primate). Using A, B and 
C to represent these attributes, the total gene expression covariance 
matrix can be expressed as:

Σ Σ Σ Σ Σ= + + +T A B C e

where ΣT is the total covariance matrix, and ΣA, ΣB and ΣC are covariance 
explained by attributes A, B and C respectively. Σe is the residual vari-
ance that is not explained by these attributes.

FLDA identifies a 3D embedding (u, v, w) of the cells such that u 
maximizes the variance of attribute A while minimizing variances 
of attributes B and C, v maximizes the variance of attribute B while 
minimizing variances of attributes C and A, and w maximizes the vari-
ance of attribute C while minimizing variances of attributes A and B. 

Supplementary Note 2 shows that u, v and w are solutions to general-
ized eigenvalue problems.

Geometric analysis of gene expression
This approach is similar in intent to FLDA in that the goal is to identify 
axes in gene expression space that capture the structure of the data, and 
that the choice of these axes is guided by a structure imposed through a 
Cartesian classification of cell types (for example ON vs OFF or primate 
vs mouse). The main difference is that FLDA also attempts to capture 
the variance across cells within a type, and this influences the selection 
of the composite axes u, v and w. By contrast, GAGE only seeks to model 
the shape formed by the gene expression centroids of the cell types 
under consideration. Thus, for a quartet of primate cell types (MGC 
OFF, MGC ON, PGC OFF and PGC ON) that form some shape in gene 
expression space, this method asks if there is a quartet of mouse cell 
types that forms the same shape. The mathematical and implementa-
tion details of this method are delineated in Supplementary Note 3.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed sequencing data produced in this work are 
available via the Gene Expression Omnibus (GEO) under acces-
sion GSE237215. The species-specific datasets are available via 
the subseries accession numbers GSE237202–GSE237214. Previ-
ously published data utilized in this paper were downloaded from 
GEO repositories with accession numbers GSE81905, GSE137400, 
GSE152842, GSE148077, GSE15910 and GSE236005. Species phylo-
genetic trees were downloaded from the UCSC Genome Browser 
database (https://genome.ucsc.edu), and species reference genomes 
are available on Ensembl (https://www.ensembl.org). Source data are 
provided with this paper.

Code availability
scRNA-seq data clustering, integration and visualization was per-
formed in the R statistical language, and heavily relied on the Seurat 
package (https://satijalab.org/seurat/). All scripts are available via 
Zenodo (https://zenodo.org/record/8067826) and on our GitHub page 
(https://github.com/shekharlab/RetinaEvolution). FLDA analysis was 
performed in Python, and the code and documentation are available at 
https://github.com/muqiao0626/FLDA. GAGE analysis was performed 
in Python, and the code and documentation are available at https://
github.com/markusmeister/Gene-Geometry.
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Extended Data Fig. 1 | snRNA-seq data from the fovea/macula and peripheral  
retina of healthy human donors (n = 18). a. UMAP embedding of nuclei 
(n = 184,808) from the central and peripheral retina of healthy human donors, 
with individual points colored by cell class. PRs have been divided into rod and 
cone subclasses, and ACs have been divided into GABAergic and glycinergic 
subclasses. b. Same as a, with points colored by sample identity. c. UMAP 
embedding of RGC nuclei (n = 80,032) from the foveal and peripheral retina of 
healthy human donors, with individual points colored by type identity. Only 
ON and OFF midget ganglion RGCs are labeled. d. UMAP embedding of non-
midget RGC nuclei (n = 6615) from c, with individual points colored by type 
identity. ON and OFF parasol ganglion cells are labeled. e. UMAP embedding  
of BC nuclei (n = 9126) from the fovea and peripheral retina of healthy human 

donors, with individual points colored by type identity. f. Dotplot showing 
expression of cell class-specific markers (columns) in the human clusters 
(rows). The size of each dot represents the fraction of cells in the group with 
non-zero expression, and the color represents expression level. The six classes 
are MG, HC, PR (subdivided into Rod and Cone), AC (subdivided into Gabaergic 
ACs (GabaAC) and glycinergic ACs (Gly AC)), BC and RGC. Only BCs and RGCs 
have been subclustered. Rows corresponding to BC and RGC clusters are 
ordered based on hierarchical clustering (dendrograms, left). Barplot on the 
right of the dotplot depicts the relative frequency of each cluster within a class 
(colors). The rightmost heatmap depicts the distribution of each cluster across 
biological replicates (columns).



Single Nuclei RGCs

DAPI

FS
C

CHX10

N
EU

N

FS
C

N
EU

N

BCs

DAPI CHX10

Single Nuclei RGCs

BCs

Pig: Whole Retina

Human: Macula 

a

b

c

d

10µm

e
NEUN CHX10 DAPI

Human Pig Sheep

Cow Squirrel Tree shrew

ONL

INL

GCL

50µm

10µm
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fluorescent activated cell sorting (FACS) experiments for collecting single 
nuclei labeled with either PE-conjugated NEUN, which enriches RGCs, or 
APC-conjugated CHX10 (also known as VSX2), which enriches BCs. Data shown 
are representative from experiments in the pig retina. NEUN and CHX10-based 
enrichment resulted in ~90% yield for RGCs and ~95% yield for BCs. b. Same as 
panel a, for human macular retina samples. NEUN-based enrichment resulted 

in ~90% yield for RGCs; BCs were not analyzed in this experiment. c. Brightfield 
image showing the morphology and integrity of FACS-purified nuclei. d. 
Confocal image of DAPI stained FACS-purified nuclei. e. Retinal sections from 
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VSX2 labels RGCs and BCs, respectively. Retinal sections were co-stained for 
DAPI (blue) to visualize nuclei. Scale bar, 50 µm. Images in panels a–e 
representative of n ≥ 3 experiments.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Summary of cell type atlases for tree shrew, sheep, 
cow, and pig. a. Dotplot showing expression of cell class-specific markers 
(columns) in the tree shrew (n = 3 animals; 71,571 nuclei) clusters (rows). The 
size of each dot represents the fraction of nuclei in the group with non-zero 
expression, and the color represents expression level. The six classes are MG, 
HC, PR (subdivided into Rod and Cone), AC (subdivided into GABAergic AC 
(GabaAC) and glycinergic AC (Gly AC)), BCs and RGCs. Only BCs and RGCs have 
been subclassified through a within-species integration and clustering analysis 
(Methods). Rows corresponding to BC and RGC clusters are ordered based on a 
hierarchical clustering analysis (dendrograms, left). Barplot on the right of the 

dotplot depicts the relative frequency of each cluster within a class (colors). 
The rightmost heatmap depicts the distribution of each cluster across samples 
(columns). Panels b-d depict the same information as panel a for sheep (n = 6 
animals; 65,490 nuclei) (b), cow (n = 6 animals; 75,794 nuclei) (c), and pig (n = 4 
animals; 49,955 nuclei) (d). Note that in this figure, as well as Extended Data 
Figs. 1 and 4–6, the proportions shown accurately report our data but do not 
necessarily represent the true endogenous proportions. This is because in 
many cases we depleted photoreceptors or enriched BCs or RGCs to obtain 
sufficient numbers of rare cell types (see Methods).
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Extended Data Fig. 4 | Summary of cell type atlases for Peromyscus, ferret, 
opossum, and brown anole lizard. Panels a-d depict the atlases (as in Extended 
Data Fig. 3) for peromyscus (n = 3 animals; 44,223 cells) (a), ferret (n = 2 animals; 

49,972 cells) (b), opossum (n = 5 animals; 76,763 nuclei) (c), and brown anole 
lizard (n = 3 animals; 42,848 nuclei) (d).
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Extended Data Fig. 5 | Summary of cell type atlases for Rhabdomys, squirrel,  
marmoset and sea-lamprey. Panels a-d depict atlases (as in Extended Data 
Fig. 3) for Rhabdomys (n = 2 animals; 65,338 nuclei) (a), squirrel (n = 1 animal; 
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Extended Data Fig. 7 | Evolutionary conservation of retinal classes.  
a. Dendrogram showing transcriptional relationships among pseudobulk 
expression vectors following integration. Each node is a cell class within a 
particular species. Dendrograms were computed via hierarchical clustering 
analysis (correlation distance, average linkage). b. Same as Fig. 2d, with cells 
colored by species of origin. Inset shows a magnified region containing samples  
from all species. c. Cross-correlation matrix (spearman) of class- and species- 
specific cell-averaged profiles for all 17 vertebrates (compare with Fig. 2b). 
Rows and columns are grouped by class, and then ordered by phylogeny within 

a class. d. Same as panel c, but rows and columns grouped based on species 
instead of class (compare with Fig. 2c). e. Pairwise mean-squared distance of 
class-specific cell-averaged gene expression profiles between all 16 jawed 
vertebrate species (y-axis) increases with evolutionary divergence, as estimated  
by substitutions per 100 bp (x-axis) (compare with Fig. 2e). Gray shaded regions 
demarcate species pairs involving zebrafish. Solid lines represent power law  
( y = axb) regression fits. Across the panels, a ∈ [0.34, 0.47] and b ∈ [0.29, 0.45]. 
The coefficient of determination (R2) values range from 0.79-0.93.
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Extended Data Fig. 8 | Evolutionary conservation of retinal subclasses.  
a. UMAP embedding of integrated cross-species data (as in Fig. 2d), highlighting 
PR subclasses cones and rods. Insets show feature plots of cone-specific (top) 
and rod-specific (bottom) transcription factors (TFs). b. Same as panel a, for AC 
subclasses GABAergic ACs (GabaAC) and glycinergic ACs (GlyAC). Insets show 
feature plots of a GABAergic TF MEIS2 and a glycinergic TF TCF4. c. Same as 
panel a, for BC subclasses ON BCs and OFF BCs. Insets show feature plots of OFF 
BC-specific (top) and ON BC-specific (bottom) transcription factors (TFs).  
d. Heatmap showing average expression of subclass-specific genes (columns) 
within the six subclasses across 17 species (rows). Rows are grouped by subclass 

(annotation bar, left). Within each subclass, species are ordered as in Fig. 1b, 
with top and bottom nodes in each dendrogram corresponding to lamprey  
and human, respectively (corresponding to right and left in Fig. 1a). Gray tiles 
correspond to missing orthology information. e. Cross-correlation matrix 
(spearman) of subclass- and species-specific pseudobulk transcriptomic 
profiles for all 16 jawed vertebrates. Rows and columns are grouped by subclass,  
and then ordered by phylogeny within a class. Lamprey was excluded due to 
paucity of shared orthologs. f. Same as panel d, but rows and columns grouped 
based on species instead of subclass.
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Extended Data Fig. 9 | Bipolar Cell OrthoType analysis including non- 
mammals. a. Confusion matrix showing the rationale behind naming 
mammalian BC OTs (rows) based on the mapping patterns of mouse BC types 
(columns)19. Representation as in Fig. 3d, with each column summing to 100%. 
OT BC8/9 contains mappings from both mouse BC8 and BC9, which are 
transcriptionally proximal. b. Barplot showing within-species relative 
frequencies (y-axis) of the 13 cone BC OTs within each mammalian species 
(x-axis). The foveal and peripheral data from primates are plotted separately.  
c. Integrated UMAP of BCs from all 16 jawed vertebrates. Cells are colored by 
species of origin. Lamprey, a jawless vertebrate, was excluded from the analysis 
due to the paucity of shared orthologous genes. d. Same as c, with cells colored 
by OT identity. The integration of all jawed vertebrates recovers all the 
mammalian BC OTs listed in Fig. 3c, but additionally identifies two OTs 

enriched for non-mammalian BCs from chick, lizard and zebrafish. The two 
OTs, named NM_OFF and NM_ON, are enriched for OFF and ON BCs from 
non-mammals (also see panel e). e. Confusion matrices showing the mapping of 
species-specific BC clusters (columns) to BC OTs (rows) identified by integrating  
BCs from all jawed vertebrates (panel c). Representation as in Fig. 3d’. Mammalian  
BC clusters predominantly map to the mammalian OTs (rows 1-14), and the 
pattern of mapping is similar to Fig. 3d. Chick, Lizard and Zebrafish BCs largely 
map to the non-mammalian OTs NM_OFF and NM_ON (rows 15-16). f. Dotplot 
showing species-specific genes (columns) expressed in RBC orthologs in 
mammals (rows). The size and color of each dot represent the percentage of 
cells within the species cluster expressing the gene and the average expression 
level, respectively.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Retinal Ganglion Cell OrthoType analysis including 
non-mammals. a. Barplot showing within-species relative frequencies (y-axis) 
of the 21 RGC OTs within mammalian species (x-axis) (Fig. 4b). The foveal and 
peripheral data from primates are shown separately. Cow is excluded due to the 
paucity of data. b. Integrated UMAP of RGCs from all 15 jawed vertebrates 
(excluding cow). Cells are colored by species of origin. For primates, fovea and 
periphery are plotted separately. c. Same as b, with cells colored by RGC OT. 
OTs 1-21 map 1:1 to the mammalian OTs in Fig. 4b, but we recover an additional 
OT (NM) predominantly containing non-mammalian RGCs from chick, lizard 
and zebrafish (also see panel d). d. Confusion matrices showing the mapping of 

species RGC clusters (columns) to RGC OTs (rows) identified by integrating 
RGCs from all jawed vertebrates (panel c). Representation as in Fig. 4d. 
Mammalian RGC clusters predominantly map to the mammalian OTs (rows 
1-21), and the pattern of mapping is similar to Fig. 4d. Except for ipRGCs, chick, 
lizard and zebrafish RGCs largely map to oRGC_NM (row 22). e. Confusion 
matrix showing the species-specific RGC clusters (columns) that map to  
the oRGC8 and 9, corresponding to ipRGCs. Representation as in Fig. 3f. 
Annotation bar (bottom) highlights species-specific RGC clusters that express 
OPN4 and EOMES, a transcription factor expressed selectively by ipRGCs20,21.
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Extended Data Fig. 11 | Midget and Parasol OTs. a. Dotplot showing examples 
of DE genes across OT1-4 and their expression across orthologous species- 
specific clusters. The size and color of each dot represent the percentage of 
cells within the species cluster expressing the gene and the average expression 

level, respectively. Column order as in Fig. 5a. b. Relative proportion of parasol 
RGC orthologs in mammalian species based on the frequencies of cells in 
oRGC2 and oRGC5.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Factorized Linear Discriminant Analysis (FLDA)  
and Geometric Analysis of Gene Expression (GAGE). a. FLDA workflow and 
eigenvalue analysis. The gene expression matrices of primate and mouse RGCs 
were combined by their shared orthologous genes. Highly variable genes were 
selected, and PCA was applied to remove multicollinearity. FLDA was performed  
on different combinations of mouse RGC candidates with known polarity and 
kinetics listed Supplementary Table 4. The combinations were ranked based  
on their FLDA eigenvalues, which measures the variance along each attribute 
captured in the projection. b. Visualization of the FLDA projection (Fig. 5c) 
along the 2D subspace corresponding to polarity (x-axis) and kinetics (y-axis). 
c. Scatter plot of the FLDA eigenvalues for the kinetics (y-axis) vs. polarity 
(x-axis), measuring the magnitude of the variance corresponding to these 
attributes captured in the projection. Inset highlights the top four matches 
(numbered 1-4) from the 432 combinations of 4 mouse types shown in 
Supplementary Table 4. d. Mouse RGC types present within the top four 
combinations out of the 432 combinations in panel c. The top matched set 
contains all four α-RGC types; the next three include 3 α-RGC types.  

e. Geometric analysis of gene expression (GAGE) in which primate MGCs and 
PGCs are compared to all combinations of 4 mouse RGC types (45 choose 4 * 4! 
= 3,575,880) rather than only the 432 curated combinations used to generate 
Fig. 5d. Grey bars: histogram of scores for all sets of 4 mouse types. Red bar 
highlights the set of 4 α-RGC types with the correct matching of polarity and 
kinetics with the primate types, also marked by the red arrow located at a score 
of x = 0.657. The bulk of the distribution is approximated as a Gaussian with 
mean 0.50 and standard deviation 0.0374 (blue line). The 4 α-RGC fit has the 
second highest score among ~3.6 million candidates. The null hypothesis that 
this arises by chance has a p-value of p < 10−6 based on a one-sided Student’s 
t-test. The top scoring combination with a score of 0.658 involves mouse RGC 
types C18, C7, C39 and C8 corresponding to the ON PGC, ON MGC, OFF PGC and 
OFF MGC respectively. Of the four mouse types, two – C18 and C8 - have been 
physiologically characterized to exhibit sustained ON responses38, which 
violates their expected phenotypic correspondence to ON PGC (ON transient) 
and OFF MGC (OFF sustained).
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