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Abstract

Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in
photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal
structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough
that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition
on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough
to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and
short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response
with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli
such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that
photoreceptors undergo rapid adaptation of response gain and time scale, over , 300 ms—i. e., over the time scale of the
response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the
response gain more than tenfold and is hence physiologically relevant.
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Introduction

The ability of neurons to modulate their response as a function

of the environment or the task is at once a staple of neural

information processing and an achievement of neural biophysics.

Adaptation is at play throughout sensory systems. In peripheral

sensory cells, one expects significant adaptation as these cells

convert wide-ranging natural inputs into neural activity confined

to a comparatively restricted range. This is true, in particular, of

peripheral visual cells [1–11] and especially of photoreceptors [11–

25]. A wealth of experimental data gathered over more than four

decades, across species, allows the identification of universal trends

in their response and adaptation properties, and renders photo-

receptors an ideal testing ground for our quantitative understand-

ing of neural adaptation.

In a typical experiment, photoreceptors are probed with flashes

or steps of light, presented either in the dark or against a light

background [11,12,14,16,18–20,22]. In these simple protocols,

‘adaptation’ refers to the dependence of the flash or step response

upon the background intensity. In photoreceptors, the response to

a transient input depends strongly upon background light

intensity: both the response amplitude and its dynamics are

affected. In the dark, a photoreceptor responds to a small flash of

light with a relatively large, slow hyperpolarization. Under bright

background conditions, the response amplitude to the same flash

decreases (reflecting a smaller gain, or ‘gain suppression’) and the

dynamics of the response speed up [11,12,14,16,19,20,22]. The

situation is further complicated in more elaborate protocols, in

which the ‘background’ light intensity—thought of as a ‘conditioning

stimulus’—itself varies in time [8,19,21]. Then the amplitude and

dynamics of the response to a light flash or step—the ‘probe

stimulus’—depend not only on the intensity but also upon the time

course of the conditioning stimulus that precedes the probe

stimulus. Similarly, the non-trivial dependence of the neural

response on the amplitude and frequency of a periodic stimulus

reflects a form of adaptation [3,9,17,26]. Thus, the distinction

between conditioning and probe stimuli, though useful within the

contexts of some experimental protocols, may be misleading. Any

given photoreceptor relies upon a single stream of absorbed

photons, based upon which it produces a response at each instant

in time. It is artificial—as a number of authors have noted in the

past and as some of the above-referenced literature observes—to

treat adaptation and response as distinct phenomena, especially if

they occur on similar time scales, and a consistent model ought to

address both on equal footing.

Adaptation is dynamical in two respects. First, photoreceptor

adaptation reflects a memory of the time course of the light

intensity input—we can call this ‘the dynamics of adaptation’.
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Second, adaptation affects the dynamics of the response itself:

quite generally, gain suppression is accompanied by a speed-up of

the dynamics—we can call this ‘the adaptation of dynamics’. This

phenomenon is often referred to as the ‘gain-bandwidth trade-off’

[27]. Furthermore, roughly speaking, photoreceptors in the dark

or in dim backgrounds tend to respond in proportion to the

incident light intensity, while in bright backgrounds they respond

to the time derivative of light intensity, for instance responding

transiently to steps in intensity [18]. This qualitative modulation of

the response as a function of background intensity supplements the

quantitative effect of response speed-up. (For references on these

phenomena in photoreceptors of different organisms, see Table 1

below.)

Any model of photoreceptor response to light intensity ought to

capture this phenomenology of adaptation, namely (i) gain

suppression, (ii) gain-bandwidth trade-off, and (iii) the transition

from proportional response (to light levels) to differentiating

response (to temporal derivatives of light levels) with increasing

background intensity. In order to model such phenomena, it is

natural to turn to the biochemical phototransduction cascade,

which converts light into neural activity and which has been

studied in great detail [22,28–31]. Yet some of its parameters have

not been measured and some of its modules, such as those involved

in calcium feedback, are still a matter of investigation and,

possibly, controversy (see, e. g., Ref. [22]). Of greater concern is the

difficulty to extract an intuitive understanding or derive qualitative

predictions from the large set of coupled biochemical equations

that represents phototransduction.

Here, we instead introduce a simple, phenomenological model,

in the spirit of pioneering models of photoreceptor response

[12,15,32] but differing from these in important ways. Through-

out, we refer to it as the dynamical adaptation (DA) model. It is

characterized by a dynamical non-linearity without feedback, the

interplay of two time scales, and no more than a few numerical

parameters. The DA model has three merits. First, it is simple

enough to be solved exactly, at least formally, for any input. Second,

the DA model remains rich enough to capture the phenomenology

of short-term adaptation on the scale of milliseconds to seconds.

Indeed, we show that it reproduces precisely a wide array of light

adaptation phenomena recorded in classic experiments on turtle

cone photoreceptors with flash and step inputs. Third, the DA

model allows one to make new qualitative predictions on the adaptive

behavior of photoreceptors, for example in response to inputs

more complicated than mere flashes and steps; this is much more

difficult to achieve using complicated biochemical models with

many equations and a great number of numerical parameters. As

Table 1. A non-exhaustive list of data showing similar qualitative behavior of photoreceptors across different taxa.

Organism

Flash in the
Dark: Gain
Control

Flash in the
Dark: Speed-Up

In Light
Background: Gain
Control/Weber Law

In Light
Background:
Speed-up

In Light
Background:
Bilobe Impulse
Response

Frequency
(Band-Passing)
Response

Limulus [72](2) [73](14,54)
[74](2) [75](5)

[12](5,9) [72](2)
[76](2)* [74](2)
[75](1,2,3)

[12](8) [77](4) [78](2)
(W = 20.7)

[12](9) [73](16) [77](2)

Insects/Drosophila [21](3) [4](4) [21](3) [21](5) [79](4)
(W = 20.8) [80](11)
[19](3) [81](8)
[82](10) [19](7)

[21](5,6) [79](3)
[80](1–8, 11)
[19](8)

[82](2) [80](2,3,5,8) [19](7(NoBP),10)
[21](5,6,9) [83](7)
[82](9,10) [81](2,3) [79](2)
(NoBP) [80](10) (NoBP)

Turtle/Salamander/Frog (Cone) [84](1,2) [69](3)
[14](4,5) [15](7)
[85](2) [86](9)
[18](7,8)

[86](9) [84](1,2)
[69](3) [14](4,5)
[15](5)

[85](3) (W = 2.7,21.3)
[87](3) (W = 21)
[88](2) (W = 21)
[18](11) (W = 21)

[85](3,9) [87](2,3)
[89](4) [88](1)
[16](1,4) [13](3,4)
[15](12)

[85](2) [87](2)
[88](1) [16](1,4)
[13](2) [18](9)

[26](7) [89](4)
(NoBP) [17](3)

Rodents/Mouse (Cone) [90](1,2) [91](1,2) [91](2) [91](1) [90](5) [90](4)

Primates/Humans (Cone) [92](1) [20](1,3)
[93](2)

[20](1) [20](14) (W,21) [93](8)
(W,21) [11](1)

[11](1) [20](9) [11](3) (NoBP)

Citation numbers are in square brackets, and the relevant figures for each follow in parentheses. In the third column of references, the specified value for W is the
measured power law fit of the Weber-Fechner law. In the case of the Limulus response, data showing a distinct saddle (‘camel hump’) in the flash response are indicated
by an asterisk (*). In the last column, data not showing band-passing characteristics are marked ‘‘NoBP.’’ We mention in passing that the flash response overshoot in
insect photoreceptors is slight compared to that recorded in cells immediately post-synaptic to them, the laminar monopolar cells [70,71]; we expect that a variant of
the DA model applies to these laminar cells.
doi:10.1371/journal.pcbi.1003289.t001

Author Summary

Photoreceptors constitute the interface between the visual
world and the cerebral world, as they convert light inputs
into neural signals. This conversion is subject to continu-
ous adaptation: response gain and time scale vary as a
function of input history. This adaptation is ‘dynamical’
both because it depends upon the temporal structure of
the stimulus and because it affects the kinetics of the
response. Traditionally, theoretical studies of photorecep-
tors fall within one of two extreme approaches: either
detailed modeling based upon the biophysics of photo-
transduction or functional modeling based upon phenom-
enological descriptions of photoreceptor response. While
the former approach involves too many coupled equations
and unknown parameters to allow for analytical treat-
ments, building intuition, or predicting trends, instances of
the latter approach, such as the simple linear-nonlinear
model, fail to capture essential features of dynamical
adaptation. Here, we develop understanding at an
intermediate level. We define and discuss a phenomeno-
logical model which is simple enough to allow for full
solutions and predictions, but embodies features of
phototransduction well enough to capture a rich phe-
nomenology. We demonstrate that our model reproduces
data with high accuracy and can be used to make
predictions on the response to sophisticated visual inputs
such as natural stimuli.

Dynamical Adaptation in Photoreceptors
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an example of the predictive power of the DA model, we apply it

to fluctuating inputs such as periodic or randomly flickering inputs.

Such inputs are often employed in modern experiments as a

means to explore a greater range of stimulus variability. It is also

generally assumed that these prevent photoreceptors from

undergoing significant adaptation. Contrary to this assumption,

the DA model predicts that fluctuating inputs induce fast

adaptation that depends upon both the intensity and the time

course of the input. We find that the DA model reproduces the

response of a salamander cone exposed to flickering light with

great precision, and we indeed uncover fast adaptation in an

analysis of the data. Motivated by this result, we use the DA

model to make predictions about the adaptive properties of

photoreceptors when these are presented with either periodic or

randomly fluctuating inputs. In the case of sinusoidal light

intensity, the character of the frequency-dependence depends

upon the contrast of the input—an essentially non-linear effect.

In the case of natural time series of light intensity, the

instantaneous gain can vary more than tenfold on a fast time

scale of , 300 ms.

Results

The Dynamical Adaptation (DA) Model
We start by presenting the equations of the DA model.

Subsequent sections apply these equations to various light

inputs and compare the outcome to data. In formulating the

DA model, we look for simple equations that capture the

dynamics and adaptation of photoreceptor response. That is,

we set the parameters in the DA model equations to be fixed

once and for all for a given cell, so that they need not be re-

fitted for different choices of conditioning and probe stimuli:

any adaptive behavior is to follow entirely from the dynamics

prescribed by the equations. Furthermore, we limit as much as

possible the number of parameters. Saturation and adaptation

effects derive from a non-linearity in the equations. Specifical-

ly, we construct this non-linearity so that it informs both gain

control and temporal modulations in agreement with the ‘gain-

bandwidth trade-off’: smaller gains are associated with faster

responses. We present the DA model equations, then explain

the intuition that lies behind them and their merit in an

analytical approach.

The DA model describes the photoreceptor membrane

potential, V tð Þ, but it is more natural to write down equations

in terms of the photoreceptor response, r tð Þ, defined as the

difference between the instantaneous membrane potential and

the resting membrane potential in the dark:

r tð Þ~V tð Þ{Vrest: ð1Þ

The main DA model equation reads

tr

dr tð Þ
dt

~ay tð Þ{ 1zbz tð Þ½ �r tð Þ, ð2Þ

where tr, a, and b are constants. Vertebrate photoreceptors

hyperpolarize in response to light, so that r tð Þ vanishes in the dark

and is negative otherwise. By convention, we define a to be

negative, while all other quantities are positive. The time-

dependent quantities y tð Þ and z tð Þ are filtered versions of the

incident light intensity, s tð Þ, given by

y tð Þ~
ðt

{?
dt’Ky t{t’ð Þs t’ð Þ, ð3Þ

z tð Þ~
ðt

{?
dt’Kz t{t’ð Þs t’ð Þ: ð4Þ

The kernels Ky tð Þ and Kz tð Þ are products of monomial and

exponential functions; each integrates to unity and is fully specified

by a few parameters. (Explicit expressions for these functions are

given in the Methods section.) The essential feature of the kernels

is that they extend over comparable time scales, but with Kz tð Þ
broader than Ky tð Þ and somewhat delayed (see Fig. 1). We note

that all the time scales that enter the DA model are of the same

order of magnitude—several tens of milliseconds: we focus on

modeling the ‘fast’ adaptation that occurs on time scales

comparable to that of the photoreceptor response, and we ignore

long-term adaptive phenomena which take place over seconds or

even minutes [22,25]. Equations (1–4) define the DA model.

The motivation for the form of Eq. (2) becomes apparent if we

consider in turn its linear and non-linear components. If b~0, the

equation is linear and the response, r tð Þ, is a low-pass filtered

version of the input,

r tð Þ~
ðt

{?

dt’
tr

ay t’ð Þexp {
t{t’

tr

� �
: ð5Þ

Since the kernel Ky tð Þ integrates to unity, in this linear version the

response gain is entirely represented by the value of the parameter

a. As for dynamics, the response is smoothed over the time scale of

Ky tð Þ and the ‘relaxation time’ tr. If b=0, the multiplicative z-

term modulates both gain and dynamics. One way of seeing this is

to divide both sides of the equation by a factor 1zbz tð Þ, to obtain

the equivalent equation,

tr

1zbz tð Þ Ltr tð Þzr tð Þ~ a

1zbz tð Þ y tð Þ: ð6Þ

The z-term yields effective, time-varying gain,

aeffective~a= 1zbz tð Þ½ �, and time scale, teffective
r ~tr= 1zbz tð Þ½ �.

These co-vary in a manner that satisfies the gain-bandwidth trade-

off: large z yields both small effective gain and small effective time

scale, and vice versa. Actually, the z-term has a more involved effect

on the dynamics than the mere rescaling of the relaxation time, tr,

as will become clear in subsequent sections. In brief, because the

effective gain is time-varying the response is in fact governed by an

‘effective kernel’ that results from a combination of the kernels

Ky tð Þ and Kz tð Þ; its time scale and dynamics depends upon the

input’s recent history.

We refer to Eq. (2) as ‘non-linear’ even though the variable r tð Þ
enters it only linearly; even though, in other words, the model is

purely feedforward. The model is non-linear in that the output is not

a linear function of the input. Throughout, when we refer to the

‘non-linearity’ in the DA model, we mean the multiplicative term,

bz tð Þr tð Þ, which is the only term responsible for the non-linearity

of the input-output relation. A great merit of the DA model is that

its feedforward form allows one to write down an exact solution for

any input choice. Indeed, it is easy to verify that Eq. (2) is solved by

r tð Þ~
ðt

{?

dt’
tr

ay t’ð Þexp {

ðt

t’

dt’’
tr

1zbz t’’ð Þ½ �
� �

: ð7Þ

Dynamical Adaptation in Photoreceptors
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One can ‘plug in’ the stimulus s tð Þ into Eqs. (3, 4, 7), analytically

or numerically, and produce the model photoreceptor response.

These equations provide an alternative definition of the model,

and are illustrated schematically in Fig. 1. All adaptive phenomena

arise because of the stimulus-dependent term that appears in the

argument of the exponential and which modulates the gain and

dynamics of the response. This non-linearity couples ‘condition-

ing’ and ‘probe’ stimuli to create a response to the stimulus history

as a whole.

Our model bears similarities to various mathematical models

that have been introduced in the context of molecular signal

transduction and which also display interesting adaptive behaviors

[33–38]. We return to these in the Discussion.

The DA Model Captures the Phenomenology of
Photoreceptor Response and Adaptation

Classic experiments on photoreceptors have characterized their

response and adaptation properties with the use of light flash and

step stimuli. The resulting phenomenology is shared by different

species (see Table 1). In order to assess the ability of the DA model

to capture this phenomenology, we compare its output to data on

one of the best-characterized photoreceptors, the turtle red-

sensitive cone cell. We focus on experiments performed by three

sets of researchers (Baylor, Hodgkin, and Lamb [13–15], Daly and

Normann [16], and Burkhardt [18]—henceforth, we refer to these

with the acronyms ‘BHL,’ ‘DN,’ and ‘B.’), which include five

stimulus protocols: single and paired light flashes in the dark

(Figs. 2 and 3), light steps in the dark (Fig. 4), bright and dark

flashes against a fixed light background (Fig. 5), and bright steps

against a fixed light background (Fig. 5). We emphasize that DA

model parameters were fixed across all experiments for each of the

three data sets (see Methods, Table 2). We used an optimization

routine for the choice of parameters, but even parameters found

by a coarse search by hand yield very similar results. In fact, it is

possible to derive satisfactory curve-fitting to the three sets of data

by varying only a small subset of parameters from one data set to

the next. The robustness of results with respect to parameter

variations is one of the strengths of the DA model.

Shape of the response: Flashes and steps of light in the

dark. The most elementary behavior of the photoreceptor is

its response to a flash of light in the dark: a transient

hyperpolarization that returns to the resting potential over the

course of 200–300 ms (Fig. 2A, top panel, data from Ref. [14]).

As the flash intensity increases, the peak response grows linearly,

then sub-linearly, and finally it saturates around 225 mV. The

response peaks more quickly for intense flashes than for weak

ones, and its tail extends further in time. Responses to intense

flashes exhibit an early peak followed by a drawn-out plateau.

The DA model reproduces all these features of the flash

response (Fig. 2A, bottom panel). Additionally, it predicts a

Figure 1. Illustration of the Dynamical Adaptation (DA) model. (A) The stimulus is convolved with two mono-lobed filters to produce the
signals y(t) and z(t). These yield the neural response according to Eq. (2). The non-linear term in the equations, which involves the signal z(t),
modulates gain (related to the area under the red curve) and time scale (related to the width of the red curve) in a history-dependent manner. Time
scale and gain thus vary together, with small gains associated with short time scales and large gains associated with long time scales. (B) The Kz filter
is broader than the Ky filter and, hence, can capture memory effects and mimic feedback. The parameter set is based upon the salamander data (see
Methods and Table 2).
doi:10.1371/journal.pcbi.1003289.g001

Dynamical Adaptation in Photoreceptors
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Figure 2. Response to single and paired flashes in the dark—comparison of data and DA model predictions. (A) Top: Traces of recorded
hyperpolarizations in a red-sensitive turtle cone, induced by light flashes delivered in the dark. Integrated flash intensities range from 41 (lowest
amplitude) to 6.7?105 photons/mm2 (highest amplitude) in intervals of factors of 2.1. (Data from Fig. 19 of Ref. [14].) Bottom: DA model predictions for

Dynamical Adaptation in Photoreceptors
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corresponding intensities. The dotted line represents the response to a flash 100 times more intense than the largest experimental flash. (B) Peak
hyperpolarization against flash intensity for the data displayed in Fig. 2A (open circles), for a separate experiment (closed circles; data from Fig. 7 of
Ref. [15]), and for the DA model predictions displayed in Fig. 2A (solid, red line). (C) Peak delay (following the input flash) against flash intensity,
extracted from Fig. 2A. (Symbols are as in Fig. 2B.) (D) Parametric plot of peak delay against peak hyperpolarization (normalized by the maximum
hyperpolarization). Data points (open circles) summarize several experiments (from Fig. 10 in Ref. [13]). Parameters were chosen so as to minimize the
root-mean-squared error in the voltage traces, and result in faster peaks at high intensities; alternative fitting criteria could better fit the peak timing.
(E) The model predicts that responses to paired flashes add non-linearly. A conditioning flash (10 ms, 560 photons/mm2/s) is presented at t~0 ms. A
test flash of identical intensity to the conditioning flash is presented either before or after the conditioning flash, and the response is measured. The
response to the conditioning flash (in the absence of any test flash) is represented as a thick, grey line, while the colored traces represent the paired
flash response minus the conditioning response on its own. The test flash delivery times are indicated by small, vertical ticks of the corresponding
colors. (F) Peak response to the test flash (normalized by the peak response to the conditioning flash alone) against the delay between conditioning
and test flashes. Negative delays correspond to situations in which the test flash preceded the conditioning flash. Circles represent data (from Fig. 12
of Ref. [13], modified to undo a saturation correction performed there), while the solid, red line represents the DA model prediction. The DA model
predictions for this figure are calculated using the parameter set BHL (see Table 2).
doi:10.1371/journal.pcbi.1003289.g002

Figure 3. Goodness-of-fit of the model output and robustness with respect to parameter variations. (A) The three panel illustrate the
relatively shallow way in which the goodness-of-fit, r2~1{ sum total of the squared errorð Þ= sum of the variances of the experimental tracesð Þ, is
degraded from its maximum of 0.94 by varying one of the model parameters. Optimal parameters were obtained from the traces of Fig. 2A and are
given in Table 2 (BHL parameter set). (B) Contour lines representing the degradation of the goodness-of-fit with respect to variations in pairs of
parameters, as a way to illustrate the reliable parameter subspace. Successive contour lines correspond to 1% increments in goodness-to-fit
degradation, with the widest line corresponding to a value of r2 equal to 80% of its maximum. The contour lines were derived from the Hermitian
matrix computed for the optimal parameter values.
doi:10.1371/journal.pcbi.1003289.g003

Dynamical Adaptation in Photoreceptors
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second peak in the response to a flash 100 times more intense

than the brightest flash in the experiment of Ref. [14] (Fig. 2A,

bottom panel). Such ‘camel hump’ responses were indeed

recorded in other experiments [39].

We characterized the reliability of the model output by

evaluating the goodness-to-fit, r2; 1{r2 is calculated as the sum

total of the squared error normalized by the sum of the variances

of each trace. Our fit yields r2~0.92. We emphasize that, while

the model captures the data reliably when parameters are chosen

to optimize the goodness-of-fit, the more significant observation is

that the latter is not very sensitive to the precise value of the

parameters. Individual parameters can be varied by a large

fraction without a significant degradation of the goodness-of-fit

(Fig. 3A). Furthermore, as expected the model is sensitive to

combinations of parameters, so that individual parameters can be

varied a great deal while maintaining a high goodness-to-fit

(Fig. 3B). We conclude from these observations that the simple DA

model is useful precisely because it does not require extensive fine-

tuning of its parameters.

In addition to light flashes, light intensity steps are often used to

characterize the behavior of photoreceptors. According to the DA

model, dim steps induce a monotonic hyperpolarization while

bright steps induce an overshoot: hyperpolarization peaks rapidly

to a maximum value, and subsequently wanes and settles to an

intermediate value (Fig. 4A). Furthermore, brighter steps induce

earlier peaks (Fig. 4A), analogous to the dynamics of flash

response. This scenario is indeed observed in experiments [15,18].

In particular, the peak hyperpolarization and the steady-state

hyperpolarization as a function of step intensity, as predicted by

the DA model, match experimental results [18] closely (Fig. 4B).

Response peak amplitude and delay: Flashes and steps of

light in the dark. Both the trends in peak amplitude (Fig. 2B)

and peak delay (Fig. 2C), as a function of flash intensity, are

captured by the DA model output. The peak amplitude exhibits

the characteristic linear growth followed by saturation. The peak

delay decreases with flash intensity, consistent with ‘gain-band-

width trade-off’. Interestingly, in both the data and the model the

peak delay continues to drop even after the peak amplitude has

saturated (Fig. 2D).

Because of non-linearity and memory in the photoreceptor

activity, the hyperpolarizing response induced by two light flashes

in quick succession is not simply the sum of the responses to two

individual flashes. If a conditioning flash is presented at time 0, the

incremental response to a test flash of the same amplitude depends

upon its timing relative to the conditioning flash (Fig. 2E). The

‘incremental response’ to the test flash is defined as the response to

conditioning and test flashes minus the response to the condition-

ing flash alone. When the test flash is delivered within a , 300 ms

window around the presentation of the conditioning flash, the

incremental response is smaller in amplitude and peaks more

quickly than when the test flash is delivered much earlier or much

later than the conditioning flash. Since the response to a flash is

extended in time, the conditioning flash can influence the

incremental response to the test flash even when it is delivered

after the test flash. Baylor and Hodgkin measured the influence of

the conditioning flash upon the peak amplitude of the incremental

response to the test flash [13]. While the theoretical curve appears

slightly shifted in time, its general shape agrees with measurements

(Fig. 2F).

Shape of the response: Flashes and steps of light against a

light background. Flashes and steps of light superimposed

upon a fixed light background are popular stimuli because they

can be used to assess gain and time scale modulations as a function

of background intensity. Here, again, data compare well with DA

model predictions. The shape of the response to a given flash

(Fig. 5A) or step (Fig. 5B) delivered against a light background

depends upon the background brightness. In dim backgrounds,

the cone response follows the input with some delay: the response

to a flash displays a single peak and the response to a step is

sustained. In bright backgrounds, the cone acts more like a

differentiator: the response to a flash displays an overshoot and the

response to a step is transient [13,16,18]. In other words, cones

report the light intensity itself in dim backgrounds, but something

closer to its rate of change in bright backgrounds. In another

context, this cross-over from low-passing behavior to band-passing

behavior was explained as a way to optimize information transfer

[40,41].

The emergence of an overshoot in the flash response in bright

backgrounds has a simple explanation. Essentially, it results from

Figure 4. Response to light steps in the dark—comparison of
data and DA model predictions. (A) DA model predictions (using
the parameter set B, see Table 2). Step intensities range from 5?102 to
1?107 photons/mm2/s by factors of e. (B) Absolute value of peak
hyperpolarization and steady-state hyperpolarization against step
intensity. The peak response (top, black line) and the steady state
response (closed circles) are from Fig. 7 of Ref. [18], and the DA model
predictions (red, solid lines) use parameter set B (see Table 2). The gain
was set to match the peak response.
doi:10.1371/journal.pcbi.1003289.g004
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the delay of Kz with respect to Ky: the delayed gain control

suppresses the tonic response to the constant light background,

which, in effect, amounts to an overshoot appended to the

transient response. By contrast, in the dark there is no tonic

response to suppress, and hence no overshoot can be generated. In

the limit of a very bright background, calculations simplify and one

can make a concise analytical statement: the DA model yields a

flash response

r tð Þ~ a

b
Ky(t){Kz(t)
� � f

b
, ð8Þ

where f denotes the flash intensity and b denotes the background

light intensity. The factor Ky(t){Kz(t) determines a universal

shape of the response, while the factor f =b sets the response

amplitude (for the derivation, see Methods). We note that in some

experiments the flash response appears to slow down again under

extremely bright backgrounds [13,15]; the DA model does not

account for this non-monotonic behavior.

The DA model makes additional predictions about the shape

of the response to flashes against light backgrounds, which can be

traced back to the simple non-linearity in the model. One

prediction is that responses to light and dark flashes are

asymmetric: the depolarization that follows an appreciable dark

flash is larger than the hyperpolarization that follows a

comparably intense light flash (Fig. 5C). The response to light

and dark steps is similarly asymmetric (Fig. 5D)—an effect

observed in experiments and captured by the DA model. Another

prediction is that intense light flashes (many times brighter than

the background) generate long-lasting response overshoots

(Fig. 5E); while the duration of the first lobe in the response is

fixed, that of the second lobe (the overshoot) depends upon the

intensity of the flash (see Methods). Both of these effects—

response asymmetry and long-lasting overshoot—result from the

fact that the effective gain and time scale are controlled by the

prefactor 1zbzð Þ{1
(see Eq. (6)) which behaves asymmetrically

when z is varied above or below its set-point value, as happens

when light or dark flashes are delivered against a light

background.

Interestingly, asymmetrical adaptation is recorded also in

human psychophysics; adaptation occurs faster following a

luminance decrement than following a luminance increment

[42]. This trend is observed relatively generically and is consistent

with the DA model: the value of z is larger immediately after a

light decrement than immediately after a light increment.

Consequently, the effective time scale, which is controlled by the

prefactor 1zbzð Þ{1
, is smaller following luminance decrement

than following luminance increment.

Response peak amplitude and delay: Flashes and steps of

light against a light background. The DA model can be used

to capture the behavior of the peak response as a function of both

the intensity of a probe stimulus and the intensity of the light

background. In the case of a step of light, the peak response

depends in a complicated manner on both the step size and the

background light level, and the DA model reproduces this

behavior quite accurately (Fig. 5D). We note that this family of

curves was obtained with a single, fixed set of parameters, without

any curve-by-curve fitting.

The ‘Weber-Fechner law’, according to which the amplitude of

the response to a probe stimulus depends in inverse proportion to

the ‘adapting’ (background) stimulus, is observed in a broad array

of psychophysical and physiological experiments. In cones, gain

suppression according to the Weber-Fechner law is observed

experimentally and reproduced theoretically over at least seven

decades of background light intensity (Fig. 5F). Several molecular

processes combine to give rise to this unified functional behavior

(the Weber-Fechner law), and bleaching in particular is believed to

be responsible for adaptation at high intensities. While the DA

model is a phenomenological model, it reproduces the entire

domain of Weber-Fechner adaptation. (For a discussion of the

relation of the DA model with molecular mechanisms, see below.)

We note that the form of the flash response in the case of bright

backgrounds, expressed analytically in Eq. (8), exhibits precisely

the Weber-Fechner form.

Response dynamics also vary with background light intensity:

brighter backgrounds speed up responses. Both data and model

predictions exhibit a reduction of the peak delay for increasing

background intensities, followed by a characteristic saturation at

high background intensities (Fig. 5G). In the DA model, this

Table 2. Four different parameter sets used to fit data.

Parameter Salamander Fit Baylor et al. (‘BHL’) Burkhardt (‘B’)
Daly and Normann
(‘DN’)

ny 4 1.5 (3) 3.7

ty (ms) 33 38 (20) 18

ny*ty (ms) 132 57 (60) 67

nz 10 7 (7) 7.8

tz (ms) 19 20 (20) 13

nz*tz (ms) 190 137 (140) 91

~bb~b=a (mV21) 0.16 0.044 0.067 0.074

c 0.23 0.93 0.57 0.22

tr (ms) 28 39 (50) 66

a (mV mm2 ms/photon) a.u. ,1.1 ,2.1 ,1.4

For data from Baylor’s papers, for instance, all theoretical curves used the ‘BHL’ parameter set, with only the parameter a varying to match amplitudes. The parameters
for each author’s data set were chosen by fitting routines as described in the Methods section. The values of a were adjusted for each experiment as simple gain
adjustments (accounting potentially for light alignment, etc.), but the remaining values were all held constant. Parameter values appearing in parentheses, in column B,
were not fit, but instead were set to typical values (see Methods). Traces of the response to a flash superimposed upon a light background, for each of the three
parameter sets, are displayed in Fig. 10C.
doi:10.1371/journal.pcbi.1003289.t002
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behavior comes with a simple explanation: although the ‘effective

time scale’ (tr= 1zbzð Þ) continues to drop with increasing

background intensity (because z grows with background intensity),

the flash response converges to a fixed shape given by

Kz(t){Ky(t), as explained above. In particular, the peak delay

converges to a non-vanishing constant, the maximum of the curve

Kz(t){Ky(t).

The DA Model Reproduces Cone Data Quantitatively and
Predicts Rapid Adaptation to Flickering Input

The simple protocols we considered in the previous section

make use of a transient input (the ‘probe’ stimulus) superimposed

upon a constant light intensity background (the ‘conditioning’

stimulus). They provide a complete characterization of photore-

ceptor activity if adaptation is governed by time scales much

longer than those that control the response to transient inputs. By

contrast, the DA model suggests that response and adaptation

occur over comparable time scales, because the quantities y tð Þ and

z tð Þ follow similar dynamics. When inputs fluctuate in time, and in

particular when the fluctuations take place on time scales

comparable to the photoreceptor time scales, the distinction

between ‘conditioning’ and ‘probe’ stimuli fades.

In order to investigate adaptive properties more broadly than

with flashes and steps of light, we presented cones of the

salamander with a time-varying white noise, whole-field light

stimulus, and we measured their responses with sharp intracellular

electrodes (Fig. 6A). The DA model output closely follows the

experimental membrane potential traces (Fig. 6B). As a bench-

mark for the DA model’s performance, we compare its output to

that of a model devoid of dynamical adaptation, namely the linear-

non-linear (LN) model [43–45]. The LN model is made up of a

linear filter, derived by reverse correlating the data trace with the

filtered input trace, followed by a static non-linearity (Fig. 6C).

Operationally, the non-linear function is extracted from a scatter

plot of the linearly filtered input against output data (such as the

one in Fig. 6D). The DA model trace follows data more faithfully

than the LN model trace (Fig. 6B). In particular, the LN model

tends to miss the peaks and troughs of the activity. This

discrepancy suggests that dynamical adaptation is at play in

salamander photoreceptors even under conditions of rapid light

flicker: the observed instantaneous gain appears to depend upon

the recent input history, whereas in the LN model any gain control

is fixed as it results from a static non-linearity. In the DA model,

history-dependent adaptation is embodied by the non-linear

z-term, and its effects indeed are strongest at peaks and troughs

of the response, which reflect an unusually high or low light

intensity level in the recent input history.

One way to examine variable gain is to divide the data set into

groups that correspond to different mean light intensities in a

sliding time window of fixed duration. Here, we compared the

entire data set to the 10% brightest and 10% dimmest preceding

300 ms time windows (Figs. 6D–F). The data corresponding to

these two extreme regimes is not captured by a purely linear fit of

the entire data set: ‘corrective gains’ have to be applied in each

regime and these differ by a factor of 1.8 (Fig. 6D). Though it

deviates more modestly from the data, the LN model output is not

satisfactory either as corrective gains are still required to reproduce

the two extreme regimes and differ by a factor of 1.4 (Fig. 6E). In

contrast to the LN model’s static non-linearity, the DA model

accounts for moment-to-moment adaptation and captures the data

without the need for corrective gains (Fig. 6F). To be precise, if

corrective gains are applied in the extreme regimes, they differ by

only a factor of 1.04 from each other. A statistical analysis reveals

that the two corrective gains for high and low 10% of light

intensity were significantly different for the linear and LN models

(both with pv0:01), while the discrepancy was not significant in

the case of the DA model (with pw0:1, see Methods).

We emphasize that this close agreement is obtained by fitting a

few numerical parameters in the DA model (see Methods), while in

principle the LN model requires fitting an entire non-linear

function. We also mention that the comparison, here, is with the

usual formulation of the LN model, which makes use of a single

temporal filter. Generalizations of the LN model that make use of

more than one temporal filter (see, e.g., [46]) would naturally

achieve a higher performance. However, in the absence of a

general prescription on how to combine the various filters, an LN

model with, e.g., two temporal filters would require fitting an

entire surface (rather than a line) to the data. The DA model

actually suggests a specific prescription for the case of photore-

ceptors; namely, that the second, slower temporal filter should act

as a divisive modulation of the first, faster temporal filter. Indeed,

if tr is small with respect to intrinsic times scales of the input or in

general at high background light levels, the DA model reduces to a

two-filter LN model in which the non-linearity is a simple divisive

one (see, e.g., Eq. (15) below).

The temporal filters used in the DA model indicate that

dynamical adaptation occurs over a time scale of ,200 2 300 ms,

and indeed we obtain a clear negative correlation between the

Figure 5. Response to flashes and steps on light backgrounds of different intensities—comparison of data and DA model
predictions. (A) Experimental responses (left) and DA model predictions (right) for brief flashes of light presented at time 0 on backgrounds of
increasing intensity. Data intensities and traces are extracted from Fig. 4 in Ref. [16], where the authors varied flash intensities so as to match peak
response among the different background intensities. Model predictions are computed using the corresponding parameter set DN (see Table 2). The
dotted curve follows Eq. 8. (B) Experimental responses (left) and DA model predictions (right) for steps of light on three backgrounds of increasing
intensity. Data intensities and traces are extracted from Fig. 1 in Ref. [16]. Model predictions are computed using the corresponding parameter set DN
(see Table 2). Background light intensity is indicated as in (A). (C) DA model predictions of responses to 100 ms bright (+) and dark (2) flashes equal
to the background intensity, delivered at time 0. Flashes are delivered on top of a light background of 2.6?105 photons/mm2/s (*16=b, for a
comparison with the strength of the non-linearity). (D) Family of peak responses to steps against step intensity. Each curve of the family corresponds
to a different background of light; the background intensity increases to the right. The abscissa measures the total light intensity, so the zero crossing
of each curve yields the corresponding background intensity. Negative ordinate values (upward segments of the curves) result from light steps, while
positive ones (downward segments of the curves) result from dark steps. Data (open circles) are extracted from Fig. 8 in Ref. [18]. DA model
predictions (solid lines) use parameter set B (see Table 2). (E) DA model predictions of responses to 10 ms flashes with large contrasts, delivered at
time 0, varying from 0.5 to 215 times the background intensity by factors of 4; the individual values are listed against the curves. The background light
intensity, b, was set to b~16=b. The parameter set B was used to compute the traces in both D and E (see Table 2). (F) Step response sensitivity
(normalized by the response in the dark) against background intensity. Data points (open circles) are from Fig. 11 in Ref. [18]. The model prediction
(red line) is computed using parameter set B (see Table 2). Both data and model satisfy the Weber-Fechner law over seven decades. (G) Delay
(following the input flash) of peak responses to a fixed flash against background light intensity. Data are extracted from Fig. 5A (closed, black circles)
and from Fig. 12 in Ref. [15] (open, black circles). DA model predictions use parameter set DN (red circles, see Table 2).
doi:10.1371/journal.pcbi.1003289.g005
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‘instantaneous gain’ of the salamander cone response and the

mean light intensity over the preceding 300 ms (Fig. 6G, see the

figure caption and Methods for a definition of the instantaneous

gain). These data also suggest that the response time scale varies in

a correlative manner with the instantaneous gain (Fig. 6H): the

response of the salamander becomes faster at moments following

periods of high light intensity (Fig. 6I, see also Methods). As before,

a careful analysis reveals that this trend is statistically significant

(with pv0.05, see Methods).

The DA Model Predicts Different Frequency
Dependences for Different Input Contrasts

Periodic stimuli represent a standard choice for probing the

temporal aspects of a response function, and we use them here to

illustrate the temporal properties of adaptation in the DA model.

We present the model photoreceptor with a sinusoidal fluctuation

superimposed upon a constant light intensity background. Here,

we define the ‘stimulus contrast’ as the fractional maximum

deviation from the mean light intensity. The DA model predicts

that the frequency-dependence of the response itself depends upon

stimulus contrast. Low-contrast inputs induce a linear, phase-

shifted response at all frequencies (Fig. 7A). High-contrast inputs

generate qualitatively different output traces, with shapes that

depend upon frequency. At intermediate frequencies (1.25 Hz and

2.5 Hz in Fig. 7A), the skewed output traces predicted by the DA

model are reminiscent of measurements in the primate outer

retina, for which a model akin to the DA model has been

advanced [9]. The data presented by Lee et al. [9] corresponds to

horizontal cell recordings, the retinal neurons postsynaptic to

photoreceptors; while it reflects adaptive processing in photore-

ceptors, it also includes further steps of processing in photorecep-

tor terminals and horizontal cells. For this reason, we have not

attempted a direct quantitative comparison with the output of the

DA model. At low frequencies (0.1 Hz in Fig. 7A), the response

follows the input closely, without appreciable delay, with only

near-instantaneous gain modulation at play.

The response plots discussed above yield an interesting

prediction on gain control. When we consider the frequency-

dependent gain — the ratio of the trough-to-peak amplitude of the

(periodic) response to the through-to-peak amplitude of the

periodic input — two qualitatively different behaviors emerge in

bright backgrounds (Fig. 7B). As expected from flash responses, for

low-contrast input the gain is suppressed at low frequencies and

has a maximum at a given frequency that reflects the time scales in

the DA model, provided that the background light intensity is

appreciable. (In fact, if Ky tð Þ and Kz tð Þ are defined to each

integrate to unity, as we have it here, the gain vanishes in the limit

of low frequency.) Such band-passing behavior was observed in

turtle cone [17] and salamander cone [26] experiments. For high-

contrast inputs, the gain remains appreciable at low frequencies.

When the model photoreceptor is exposed to high-contrast, slow,

periodic input, its response simply follows the input with

saturation; in the limiting case of a very intense light background,

the response oscillates between zero and its saturation value, a=b.

There remains a small gain suppression at low frequencies due to

the non-linear, saturation property of the photoreceptor response.

Thus, when exposed to high-contrast inputs the model photore-

ceptor responds in a ‘low-passing’ manner. While we expect

experiments to confirm this behavior, quantitative comparisons

remain to be carried out.

We note that the frequency dependence of the gain in the high-

contrast case obtained from the DA model is very similar to the

experimental frequency dependence presented in Fig. 1A of Ref.

[3]. As in the case of Ref. [9], Ref. [3] reports on recordings of

horizontal cells submitted to periodic light input. It proposes a

model that makes use of a feedback, frequency-dependent, divisive

non-linearity. The DA model offers an alternative explanation.

The DA Model Predicts Large Modulation of Gain by
Natural Flickering Inputs

Flicker stimuli are used quite commonly to measure receptive

fields (see, e.g., [45]). These can change as a result of adaptation

(to different levels of light intensity, contrast, or other stimulus

parameters), and studies of adaptation often use flicker stimuli to

evaluate the receptive field under different conditions (see, e.g.,

[1,6–8,47]). Thus, the flicker stimulus is meant as a ‘probe’ to test

performance of the system in different ‘states’. Here, we show that

this stimulus itself induces substantial adaptation in the system, so

Figure 6. Analyses of salamander cone data with a Linear-Non-linear (LN) model and with the DA model. (A) A white-noise flickering
light stimulus (top) is presented to a salamander cone while its membrane potential (bottom) is measured. (B) Enlarged cone response trace and
comparison of the experimental curve, the LN model prediction, and the DA model prediction. The LN model prediction deviates from the recorded
trace with a RMS residual of 0.277 (in units of response s.d., or 0.533 mV); equivalently, a r2 value of 0.927. The DA model has a RMS residual of 0.243
(in units of response s.d., or 0.468 mV); equivalently, a r2 value of 0.943. The DA model follows the experimental output more closely, especially at
peaks and troughs where discrepancies with the LN model are most prominent (signaled by black triangles). (C) Schematic illustration of the LN
model. The stimulus is convolved with a best-fit linear filter, obtained by reverse correlation of the response to the stimulus. A static, non-linear
function is then evaluated, with the output of the convolution as its argument, to produce the predicted response. (D–F) Scatter plots of the
experimental cone response against the model predictions. In (D), the cone outut is compared to a linear prediction (denoted u(t) in panel C). The LN
non-linearity is read off from this plot. In (E), the cone output is compared to the full LN model prediction. In (F), the cone output is compared to the
DA model prediction. Low intensity (green) and high intensity (red) points are highlighted as those for which the preceding 300 ms of stimulus is in
the brightest and dimmest 10%, respectively. The slope obtained from all points taken together is 1 (black line), and tick marks are 1 s. d. For the
linear prediction, the slopes of the two subsets of points are 1.36 (green line, low light) and 0.76 (orange line, bright light). For the LN predictions, the
slopes of the green and orange lines are 1.18 and 0.87, respectively. These differences are statistically significant (pv0.01, see Methods). For the DA
predictions, the slopes of the green and orange lines are 0.98 and 0.94, respectively. This discrepancy is not statistically significant (pw0.1, see
Methods). Thus, the DA model prediction replicates the experimental output more precisely than the LN model prediction. Overall r2 values in the
three cases (D), (E), and (F) are 0.918, 0.927, and 0.943, respectively; thus, the LN non-linearity accounts for 11% of the missing variance, while the DA
model accounts for 30% of the missing variance. (G) Plot of the instantaneous gain as a function of the average light intensity in the preceding
300 ms. The instantaneous gain was calculated, at each time, as the slope of the linear fit in an experimental response-versus-linear prediction scatter
plot. (H) Variation of the response time scale as a function of the preceding light intensity. Instantaneous gain values along the time trace were split
into ten percentile groups and, for each group, the time of maximum cross-correlation between input and experimental response was calculated (see
Methods). The resulting value is plotted against the instantaneous gain value of the percentile. The slope of the best linear fit is 9.663.6 ms. (I)
Variation of the shape and, specifically, time scale of the instantaneous best linear filter as a function of the preceding light intensity. Three linear
filters, computed for the highest, middle, and lowest 10% of instantaneous gain values, are plotted. The data show that both the gain and time scale
vary dynamically with light intensity.
doi:10.1371/journal.pcbi.1003289.g006
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the system actually experiences a range of states even during the

probe stimulus. The issue is not a purely academic one, since in

many natural situations individual photoreceptors indeed receive a

flickering input. The time scales in natural situations are a function

of spatial modulations and motion in the visual scene, as well as

observer and eye movements. In humans, saccades occur every

*300 ms [48], thus producing flicker at individual photoreceptors

with a time scale of the order of response time scales. Furthermore,

in a natural visual scene, light intensity varies in space by about

four orders of magnitude [48], yielding large-amplitude flicker

from eye movement.

Endeman and Kamermans [49] recorded from a goldfish cone

which was presented with a clip of the naturalistic light intensity

time series measured by van Hateren [50] (Fig. 8A, top panel). We

digitized the goldfish cone voltage trace and fitted the DA model

to it (Fig. 8A, bottom panel, see also Methods). For this specific

movie clip, the gain in the goldfish cone response varies in time by

a factor of three; the quantitative agreement (with r2~0.934)

between the experimental and theoretical traces demonstrates that

the DA model replicates the modulation in the reponse properties

also in the case of natural inputs, in which fluctuations can be

more severe than in laboratory conditions.

In order to explore the properties of the DA model in response

to natural stimuli further, we calculated its response to a different

clip of the same naturalistic stimulus (Fig. 8B, top panel), deeper in

the non-linear regime (see Methods for details on model

parameters). The series varies over close to three orders of

magnitude on scales ranging from tens of milliseconds to seconds.

The DA model response to this input (Fig. 8B, bottom panel)

exhibits overall gain compression: the output varies over less than

a single order of magnitude. But how can we extract the rapid,

moment-to-moment adaptation induced by the fluctuating input?

An intuitive way to uncover rapid adaptation is to superimpose a

set of dim flashes upon the natural light intensity series. The

‘impulse response’ (i. e., the response to the complete input minus

the response to the natural time series alone) reveals the moment-

to-moment adaptation that occurs in the model photoreceptor: its

amplitude varies as a function of time. It can be either smaller or

larger than the response (Fig. 8C) to an identical flash

superimposed upon a fixed light background matched to the

mean intensity in the natural series. Furthermore, moment-to-

moment adaptation is significant: impulse response amplitudes

vary by more than twentyfold (Fig. 8C).

From the non-linear structure of the DA model it further follows

that the mean impulse response has a greater amplitude than the

impulse response in the case of a matched constant light

background (Fig. 8C). In other words, on average the model

photoreceptor is more sensitive in a fluctuating visual environment

than in a static one. The variations of impulse response amplitude

follow from the fact that the instantaneous gain depends upon light

received during the preceding *300 ms. And the enhanced

average impulse response follows from the model’s property that,

in a bright visual environment, moments of brighter light only

suppress the gain by a little bit while moments of dimmer light

boost the gain appreciably.

Yet another manifestation of dynamical adaptation as captured

by the DA model lies in the difference between the average

response to a flickering input and the response to a constant light

input with matched mean. In order to examine this effect, we

constructed an input in which 1 s windows of natural intensity

time series alternated with 1 s windows of constant light with

matched mean (Fig. 8D, top panel). We calculated the model

response over instantiations of natural time series, and derived two

conclusions from the average response trace (Fig. 8D, bottom

panel). First, on average a transient hyperpolarization follows the

onset of the constant light input, while a transient depolarization

follows the onset of flicker. Second, the ‘steady-state’ average

response to flicker is depolarized as compared to the steady-state

response to constant light. The transient hyperpolarizing and

depolarizing responses arise because a light-adapted photoreceptor

is more sensitive to negative (i. e., hyperpolarizing) deflections in

the input than to positive (i. e., depolarizing) ones (Fig. 5D). This

asymmetry biases the average steady-state response to flickering

input toward depolarization, as compared to the response to

constant, mean-matched light.

Figure 7. Response to periodic inputs—DA model predictions.
Parameter set B was used for theory curves in this figure (see Table 2).
(A) Traces of model responses (thin lines) to 25%, 50%, and 100%
contrast sinusoidal inputs with frequencies 0.1, 1.25, 2.5, and 5 Hz,
superimposed on a background light intensity of 3.6?105 photons/mm2/
s. The thick line represents the input. The abscissae are scaled so as to
allow for two periods. Horizontal lines for each trace represent the
potential when the input sinusoid has 0 amplitude. (B) ‘Effective gain’,
calculated as the ratio of the trough-to-peak amplitude of the response
to the through-to-peak amplitude of the input. Different colors
correspond to different background intensities, varying from 360 to
7.2?105 by factors of ,2. At low input contrast (thin lines), the DA model
behaves as a band-pass filter, while at high input contrast (thick lines) it
behaves nearly as a low-pass filter.
doi:10.1371/journal.pcbi.1003289.g007
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The above arguments appear to be quite general, and should

apply to cases in which flickering inputs are drawn from

distributions other than the van Hateren series used here. In

Methods, we discuss the case of Gaussian flickering inputs, often

used in experiments. For that choice of inputs, we can work out

analytical results, which confirm the above arguments and agree

with numerics. Furthermore, the analytical results illustrate the

fact that adaptive effects depend not only upon that magnitude of

the flicker but also upon its temporal structure (see Methods).

Putative Connection of the DA Model to the
Biochemistry of the Phototransduction Cascade

The DA model is a phenomenological model that makes no

explicit reference to the mechanisms of phototransduction. A

number of studies [22–24,28–31] have examined the mechanism

by which light is converted into electrical activity in photorecep-

tors. They have revealed the beautiful intricacies of the biophysics

of phototransduction at the molecular level, but the resulting set of

equations is too complicated to be used, as a whole, for developing

intuition or making qualitative predictions. Phenomenological and

mechanistic approaches are complementary in the purpose they

serve; nonetheless it is worthwhile to look for possible connections.

The hyperpolarizing response of a photoreceptor to light results

from the closing of channels, due to the transformation of cyclic

GMP (cGMP) into GMP through the action of activated

phosphodiesterase. The molecular steps of the phototransduction

cascade are illustrated schematically in Fig. 9. In order to explain

the properties of cone response at the molecular level, it is

necessary to understand the nature and relative relevance of the

non-linearities at each stage of the feedforward cascade. Because

the reduction of the cGMP concentration, cG� , depends upon the

concentration of activated phosphodiesterase, cP� , and upon its

Figure 8. Response and dynamical adaptation with respect to
natural fluctuating inputs—DA model fit and predictions. (A)
Top: Sample of a light intensity trace, from the natural time series in Ref.
[50]. Bottom: The corresponding DA model response trace (red),
superimposed upon goldfish cone recording (black) from Ref. [49].
The agreement between the two traces is quantified by an r2 values of
0.934. The parameters a, b, and c were fitted to the data; otherwise
parameters from set B were used (see Table 2).(B) Top: Different clip
from the same light intensity trace as in (A), from the natural time series
in Ref. [50]. Bottom: The corresponding model response trace. (C) DA
model predictions of responses to small (100-photon) flashes superim-
posed on the fluctuating natural light intensity. The flash is presented at
time t~0. Thin pink curves represent individual flash responses, while
the thick red curve is the average over all such responses. The weakest
(1st percentile) and strongest (99th percentile) peak responses are
measured as 20.0238 mV and 20.5524 mV, respectively, i. e., they
differ by a factor greater than 20. The dotted thick red curve is the flash
response in the presence of a constant background matched to the
mean of the fluctuating input. The dotted red curve peaks at {0.081
mV, while the solid red curve peaks at {0.135 mV. Thus, individual flash
responses vary greatly as a function of background history, and their
mean is offset with respect to the constant-background case. (D)
Response to a fluctuating input with time-varying contrast. Top:
Superimposition of several input traces. The standard deviation of the
flicker switches, suddenly and periodically, from its natural value to
zero, with a period of 2 s, while its mean remains constant. Bottom:
Trace of the mean DA model response to the time-varying flicker. (The
thick red line represents an average over multiple natural stimuli. The
pink area represents the standard error of this average.) Each switch is
signaled by an over- or under-shoot in the mean response, depending
upon the direction of the switch. The ‘steady-state’ mean response is
greater (more hyperpolarized) in the constant-background half-period
than in the fluctuating-background half-period. Parameter set B was
used for all theory curves in (B), (C), and (D) (see Table 2).
doi:10.1371/journal.pcbi.1003289.g008
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own concentration—the concentration of cyclic GMP (i. e., the

activated form of the substrate)—the corresponding phototransduc-

tion step is non-linear even at relatively low light intensities (see

Eq. (9) below). This reaction is often presented as the dominant

source of non-linearity in the cascade (see, e. g., Refs. [23,25] and

references therein). At high light levels, other sources of non-

linearity may come into play. Pigment bleaching becomes relevant

over the three or four upper decades of illumination, up to 1010

photons/mm2/s [18]. That is, in this range of illumination the very

first reaction in the cascade, between photons and rhodopsin,

becomes non-linear due to the limited pool of rhodopsin

molecules. Whether similar substrate-limited non-linearities occur

at intermediate light levels in the case of transducin and

phosphodiesterase is as yet unclear for cones. (While there are

indications that the transducin and phosphodiesterase steps in the

cascade may be substrate-limited in rods [51], experiments on

cones suggest that phosphodiesterase does not become limiting

until the photopigment is already completely bleached [52]. These

experiments, though, were performed on membrane preparations

from cones and hence do not take into account morphological

effects of natural phototransduction. Cone morphology may have

a significant influence on the activation of phosphodiesterase by

diffusing activated transducin molecules.)

It thus seems that the site of adaptation moves from the back

end of the feedforward cascade—namely, the GMP step—to the

front end at very high light intensities. (In an interesting analogy,

within the retina as a whole, the main site of light adaptation also

moves from downstream processing—namely, the transfer from

bipolar to ganglion cells—to the front end—namely, cones—at

high light intensities [11].) Here, we focus upon the GMP step of

the phototransduction cascade, as its non-linearity appears to play

a dominant role over a major part of the natural range of light

intensities. The analysis of earlier non-linearities would be similar,

as their mathematical form is similar. The inactivation of GMP by

phosphodiesterase can be modeled as

tG�
dcG�

dt
~A{(1zBcP� )cG� , ð9Þ

where tG� , A, and B are constants. The photoreceptor response

grows in proportion with the deviation from the resting value of

the cGMP concentration,

dcG�:�ccG�{cG�~
A

1zB�ccP�
{cG� , ð10Þ

where �ccG� and �ccP� are the resting values of the concentrations of

cGMP and phosphodiesterase, respectively. Inserting Eq. (10) into

Eq. (9), we obtain an equation for dcG� , as

tG�
d(dcG� )

dt
~B�ccG�dcP�{(1zBcP� )dcG� , ð11Þ

where dcP�:�ccP�{cP� is the deviation of the phosphodiesterase

concentration from its resting value. Equation (11) is similar to the

central equation of the DA model, Eq. (2): here dcG� plays the role

of the response, r, and dcP� is an intermediate, light-responsive

quantity analogous to y and z in the DA model.

The essential difference between Eqs. (2) and (11) is that, in the

former, the quantities y and z vary on different time scales,

whereas in the latter, the two phosphodiesterase-related quantities

vary on the same time scale. In the DA model, the action of z is

somewhat slower and slightly delayed with respect to that of y.

Indeed, z can be written as resulting from a convolution with the

sum of two kernels, one corresponding to the dynamics of y and

the other to slower dynamics (see Eq. (13) in Methods). The fast

component of z, which operates on the time scale of the response,

i.e., the time scale of y, can be identified with the non-linearity

inherent in the feedforward pathway of the phototransduction

cascade, discussed above. The slow component of z can be

interpreted as mimicking the delayed effects of feedback loops in

phototransduction, i.e., biophysical reactions that occur beyond

the main cascade (discussed above). The quality of our fits to data

suggests that, at least within the experimantal range we

considered, the complicated feedback processes involved in

phototransduction may be well approximated by a simple

feedforward non-linearity.

Discussion

Summary
We introduced a new phenomenological model that captures

the response and adaptation properties of cone photoreceptors.

The DA model is expressed as a first-order differential equation in

time (Eq. (2)) and relies upon a single non-linearity. Because of the

interplay of a few time scales, response properties depend upon

recent history. Both response gain and dynamics are influenced by

the input history. Thus, the DA model provides an example of

truly dynamical adaptation. The simplicity of the model allows for

an exact analytical solution for any input time course (Eq. (7)) and

for straightforward numerical calculations.

Figure 9. Schematic illustration of the phototransduction
cascade. Initially, photons are absorbed by rhodopsin molecules. This
triggers a sequence of biochemical reactions resulting in photoreceptor
hyperpolarization and calcium influx. We highlight the reaction step in
which activated phosphodiesterase (red) increases the rate of
conversion of cyclic GMP to GMP (green). The documented calcium
feedback mechanisms (blue) include positive and negative regulations
of reaction rates (denoted by the symbols + and 2 respectively).
doi:10.1371/journal.pcbi.1003289.g009
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We evaluated DA model outputs for inputs that have been used

historically to characterize adaptation, namely flashes and steps of

light, and we found that the DA model captures the phenome-

nology of adaptation qualitatively, and in most cases also

quantitatively. Specifically, it reproduces gain compression and

dynamical modulation of the response to large ‘probe’ stimuli

(flashes and steps) (Figs. 2 and 4), as well as gain control and

dynamical modulation as a function of ‘conditioning’ stimuli

(Fig. 5). What is more, we found that the transition from a

monophasic flash response in dim backgrounds to a biphasic flash

response in bright backgrounds emerges naturally from the DA

model (Fig. 5). Interestingly, also, while we fitted the model to data

that did not present these, it predicted double-peaked (‘camel

hump’) responses to intense flashes (Fig. 2A, bottom panel);

responses of this characted indeed have been recorded experi-

mentally [39].

When we stimulated the DA model with randomly flickering

inputs, we found that it can reproduce salamander cone data with

great precision (Fig. 6). In particular, it corrects systematic errors

that appear if the dynamical character of adaptation is ignored (as

in LN models). Furthermore, the DA model predicts fast, moment-

to-moment adaptation, controlled by a time scale of about 300 ms,

even in the presence of rapid flicker. A careful analysis of

salamander cone data indeed uncovered this form of fast

adaptation (Fig. 6).

The fundamentally dynamical nature of adaptation in the DA

model implies other non-trivial response behaviors when the model

photoreceptor is exposed to fluctuating inputs, such as periodic

inputs or flickering inputs. In the case of periodic inputs, it predicts a

qualitative change of the frequency-dependence of the response

when contrast in varied: At low contrast slow inputs are suppressed,

while at high contrast slow inputs elicit maximum gain (Fig. 7).

In the case of randomly flickering inputs, the gain in response to

transient stimulation varies significantly on a fast time scale (Fig. 8).

Furthermore, the mean photoreceptor output itself is modulated

by the amplitude of fluctuations (Fig. 8). Such a coupling between

the mean and fluctuations about the mean is a signature of non-

linearity.

The DA model is a worthwhile compact description of

phototransduction, especially as several of the important numer-

ical parameters involved in the molecular cascade have not been

measured, the forms of some of the non-linearities have not been

determined, and the feedback mechanisms—in particular the

multiple calcium feedback mechanisms—are still a matter of

investigation (see, e. g., Ref. [22]). We have given a heuristic

interpretation of the DA model in terms of phototransduction

biochemistry. In the light of this interpretation, adaptation is seen

as the result of a fast process inherent to the feedforward branch of

phototransduction, supplemented by a slower, presumably feed-

back, process still accurately mimicked in the DA model by an

additional feedforward term. Here, ‘feedback’ refers to a process in

which the output state of the photoreceptor would affect an

‘upstream’ biophysical interaction. But this does not mean that the

DA model provides a complete description of (feedback) adapta-

tion. In the feedforward DA model, gain and time scales co-vary.

Some calcium-related processes in feedback adaptation may work

differently. Experiments indicate that calcium concentration can

modulate response gain while leaving time scales unchanged [53].

Furthermore, calcium dynamics seem to involve much longer time

scales than those of concern here [25,54,55].

What Is (Dynamical) Adaptation?
Historically, light adaptation was defined with experiments that

used a ‘conditioning’ stimulus and a ‘probe’ stimulus. The neuron

under study was exposed to a conditioning stimulus for some time,

and then its response to a probe stimulus was measured;

adaptation was defined in terms of the difference between the

responses to the probe stimulus with and without conditioning

stimulus. Typically, conditioning stimuli were chosen to vary

slowly in time or not vary at all, as in the case of a constant light

intensity background, and probe stimuli were devised as transient

variations in light intensity, such as flashes or steps.

Quite generally, neural activity saturates in response to large

stimuli. One concern, in defining adaptation, was to disambiguate

this simple gain compression from a more involved effect of the

conditioning stimulus [13,14]. Clearly, for this one needed a

model of the gain compression. The LN model was often used as

such a model: instantaneous gain compression was ascribed to the

shape of the non-linear transfer function (the ‘N’ part of the LN

model), while ‘true adaptation’ was inferred from conditioning

stimulus-dependent changes in the amplitude and shape of the

linear filter (the ‘L’ part in the LN model) [6,8,46].

Thus, light adaptation is often defined in a model-dependent

manner that may lead to some amount of confusion. For example,

if a system is invested with dynamical non-linearities—as is

generally the case for neural systems—it is unnatural to

disambiguate ‘gain compression’ and ‘true adaptation’ with the

use of a static non-linearity. But even if one ignores this caveat, the

definition of adaptation in terms of ‘conditioning’ and ‘probe’

stimuli may be problematic. The definition is suitable if the time

scales of response and adaptation are very far apart. Then any

stimulus can be divided into a slowly varying component, which

‘conditions’ the system, and a rapidly varying component, with

which the system is ‘probed’. But if the time scales of response and

adaptation are comparable, as is the case for photoreceptors, then

the distinction between ‘conditioning’ and ‘probe’ stimuli becomes

artificial. This is especially true when the input itself varies over

these time scales. Put differently, photoreceptors adapt and

respond concomitantly.

In experiments in which the response properties of a cell are

modulated by the intensity of the input fluctuations, rather than by

changes in its mean, it is customary to invoke ‘contrast adaptation’.

In our case, too, one can say that the photoreceptor undergoes a

kind of contrast adaptation, as its sensitivity is modulated by the

intensity of input fluctuation (see Fig. 8). But this terminology may

be misleading because, again, all three time scales—that of

response, that of adaptation, and that of flicker—are comparable.

For this reason, we prefer to talk about dynamical adaptation. In a

model such as the DA model, and in reality, adaptation is

dynamical in at least two ways. There is ‘the dynamics of

adaptation’: the way in which response properties adjust depends

upon the structure of the history of the stimulus, not only upon a

single number. There is also ‘the adaptation of dynamics’: not only

does the gain change as a function of the experimental conditions,

but the response kinetics also vary.

Regardless of the specific form it takes, adaptation is often

viewed as a change of model parameters—gains or time scales, for

example. But a complete model should incorporate the apparent

change of parameters, on several nested time scales, as a natural

result of its (possibly very complicated) dynamics. A number of

studies have addressed this issue, and in particular have proposed

models with temporal properties that vary adaptively

[6,10,46,47,56–59]. Similarly, the simple DA model can account

for the phenomenology that can appear as a change of LN model

parameters, namely fast adaptation over a few hundred millisec-

onds. We have argued that, in a case such as this, response and

adaptation are inseparably intertwined concepts. In the case of

longer-term adaptive phenomena (for example, those that result
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from photopigment regeneration), one can invoke slow parameter

changes in the DA model. Here, ‘adaptation’ can be defined more

easily. But, again, ultimately one would like to construct a richer

model that incorporates dynamics over the longer time scales of

interest. In this upgraded description, there will be no formal

distinction between ‘adaptation’ and ‘response dynamics’. In this

sense, ‘adaptation’ is an elusive notion: once understood in terms

of a system’s dynamics, it no longer stands as an independent

feature [10,57]. Instead of speaking of adaptation, it may be more

natural to characterize a neural system or a set of response

phenomena by the time scales and non-linearities that govern the

dynamics. In the case of the DA model, photoreceptors are

described by the interplay of three time scales and a single,

multiplicative non-linearity according to which gain and dynamics

are modulated by a signal, z tð Þ.

Phenomenological Nature of the DA Model
The DA model is a phenomenological (or functional) model. It

came about as we were searching for a simple model that could

capture data, and in particular the dynamical aspects of

adaptation, quantitatvely. Somewhat to our surprise, we found

that it reproduced a large quantity of observations collected over

the past four decades. It also corrected systematic errors made by

LN models—which, incidentally, fail to describe the dynamical

aspects of adaptation—when it was checked against photoreceptor

reponse traces that we recorded. Now, the photoreceptor is likely

the best understood neural cell and the biochemistry of

phototransduction is identified in some detail; it can be modeled

as a relatively large set of coupled non-linear equations. A

question, then, follows: Have simple, phenomenological models,

such as the LN model or the DA model, any reason of being? We

believe that the answer is affirmative, and we explain here why.

Biochemical models involve not only many coupled non-linear

equations, but also a large set of numerical parameters, many of

which cannot be measured directly. Thus, it is very difficult to

explore the parameter space of these models and to extract from

them generic behaviors and testable predictions. By contrast, a

phenomenological model of a cell’s response can be tractable

enough that generic behaviors and robust predictions be

established. Phenomenological models are thus useful to identify

‘computational modules’, which can be sought after in more

complicated mechanistic models. For example, the DA model

displays the computational power of the interplay of two time

scales through a feedforward non-linearity.

Phenomenological (or functional) models have proved fruitful in

neuroscience. Besides the reasons just mentioned, this is because

they embody what a post-synaptic neuron or, more generally, a

neural circuit ‘cares about’. While the study of the intricacies of the

phototransduction cascade is eminently interesting, ultimately the

input-output relation of photoreceptors is relevant to downstream

visual processing, irrespective of biochemical details. Moreover,

phenomenological models are useful in establishing connections

between systems that share functional commonalities but may

differ greatly in their mechanistic aspects. For example, the DA

model is akin mathematically to models of signaling in non-neural

cells [33–38]. Phenomenological models also come with a

generalization power: they can be modified to describe other

systems. We indeed expect that variants of the DA model will be

useful to study the computational properties of visual or sensory

cells other than photoreceptors, which do not rely upon any kind

of phototransduction but which do display a similar phenomenol-

ogy in their input-output relations. Finally, phenomenological

models can be of use in analyzing mechanistic models. Here, we

have used insights gleaned from the DA model—namely, that

adaptation may result from feedforward coupling and that a

simple non-linearity involving two time scales may be responsible

for it—to examine the phototransduction cascade and to suggest a

putative key step in the latter.

How Is the DA Model Different from Earlier
Phenomenological Models?

The DA model is similar in spirit to the pioneering phenom-

enological models of photoreceptors by Fuortes, Hodgkin, Baylor,

and Lamb [12,15] and by Carpenter and Grossberg [32]. The

oldest model, put forth by Fuortes and Hodgkin [12], is made up

of a succession of linear filters followed by a feedback non-

linearity. The cascade of filters in their model plays the role of the

filter Ky in the DA model, and the non-linearity governs adaptive

phenomena as in the DA model. In another class of models,

advanced later by Baylor, Hodgkin, and Lamb [15], again a

succession of linear filters controls the variation of an intermediate

quantity (presumed to be the concentration of some chemical)

which then translates into the membrane potential of the cell. But

this quantity induces its own removal, through a feedback process

on decay rates.

These earlier phenomenological models and the DA model are

similar in that they rely upon an initial linear filtering of the input

and a subsequent non-linear transformation. The major difference

between the two, however, is that earlier models come with a

feedback non-linearity while the DA model comes with a feedforward

non-linearity. The former involves higher powers of the model

output, so that a linear analysis (such as fitting an LN model)

would reveal output-dependent effective parameters. By contrast, the

latter remains linear in the output; as a result, in a linear analysis

effective parameters are independent of the output state of the system.

Roughly speaking, in a feedback system the output can affect the

earlier stages, while in a feedforward system it does not—only the

input does. In the Fuortes-Hodgkin model [12], for example, the

role of our delayed signal, z tð Þ, is played by the cell output which

enters the equation non-linearly; thus, adaptive properties depend

upon the value of the output, whereas in the DA model they are

affected only by the value of the input. Biochemical feedback loops

in phototransduction are well-documented—so is a feedforward

model bound to be useless? There are at least two reasons for

which a feedforward model applies well to this system. First,

adaptation may be carried out in both the (complicated)

feedforward part of the phototransduction cascade and in its

feedback loops simultaneously (see section ‘Putative Connection of

the DA Model to the Biochemistry of the Phototransduction

Cascade’ above). Second, even if feedback loops are essential to

adaptive phenomena in photoreceptors, it is conceivable that they

are well-approximated by a feedforward process for a range of

inputs. In this approximation, one trades mechanistic details for

computational simplicity.

One may wonder why phototransduction requires several

feedback loops (illustrated in Fig. 9) and which aspect of visual

computation they each relate to. One way to approach the

problem is to identify a computation that a feedforward system

cannot carry out. Somewhat surprisingly, we found that a

feedforward system, such as the DA model, can reproduce

sophisticated data with high accuracy. It is thus plausible that a

non-linear feedforward system with several time scales mimics

feedback quite well. Alternatively, it is possible (though improb-

able) that some of the feedback is necessary, not for functional

computation, but for internal molecular bookkeeping or as a safety

net when photoreceptors face extreme conditions.

Carpenter and Grossberg have proposed several variants of

phototransduction models [32]. One among these can be
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re-written in a way that makes the similarity with the DA model

apparent. The important difference between the two, though, is

that the Carpenter and Grossberg model is devoid of a delayed

process, as opposed to the DA model which captures delayed

effects with its z tð Þ term.

Away from the specific realm of phototransduction, a number of

studies of cellular signal transduction have introduced models that

share similarities with the DA model; see Refs. [33–38] and

references therein. In most cases, however, the decay part of the

model equation contains only a non-linear term, while in the DA

model it has both linear and non-linear components. One such

example is referred to as the ‘perfectly adapting’ model in the cell

signaling literature. One model of phosphorylation-dephosphory-

lation contains both linear and non-linear decay. But it is governed

by a single time scale in the signal. By contrast, the interplay of

different time scales, which appear through the y tð Þ and z tð Þ terms

in the DA model, is central to its behavior. To our knowledge, the

present work provides a novel application of dynamical systems

ideas popular in signaling studies to transduction cascades in

neurons, and offers detailed results on adaptation to stimuli with

complicated correlation structures.

How Widely Are DA-Like Models Valid?
We applied the DA model to turtle cone and salamander cone

data, but we anticipate that it can be used to describe

photoreceptors in other taxa since these exhibit a very similar

phenomenology (Table 1). The trends we discussed in the context

of experiments on the turtle cone are consistent across species,

from invertebrates such as fly and Limulus to vertebrates such as

salamander, mouse, and primate. In particular, modulation of

both gain and dynamics is observed across taxa. Every studied

species exhibits non-linear compression of the flash response in the

dark as well as speed-up with flash intensity. Gain compression as

a function of background light intensity is also apparent in all

species, although in some cases it is best fitted with a modified,

non-linear Weber-Fechner rule (according to which the response is

proportional to f =b, the ratio of the flash intensity to the

background intensity, raised to some power).

Biphasic (‘differentiating’) flash responses in the presence of a

bright background are observed widely, and indeed the DA model

predicts a transition from monophasic impulse responses to

biphasic impulse responses for increasing background intensity.

Yet, it appears that the second, overshoot lobe may be less

pronounced or even absent in some species, such as primates, as

compared to the turtle data examined in detail here. Also, while

much of the insect data does not present biphasic flash responses in

bright backgrounds, the literature cited in Table 1 notes a small

but distinct second lobe. (Interestingly, however, laminar record-

ings in insects display perfect biphasic impulse responses that

integrate to zero [60].) The DA model can account for such

variations in the shape of the impulse response. In particular, the

parameter c sets the background intensity at which an overshoot

lobe appears and the parameter tz sets the shallowness of the

overshoot lobe; for large tz, the overshoot becomes very shallow

and can be difficult to detect in the presence of noise. (See Fig. 10A

and B and captions for a more detailed discussion of this point.)

Since invertebrate and vertebrate phototransduction cascades

are evolutionarily distinct [61], one is led to think that the

adaptation phenomenology summarized in Table 1 represents an

adequate solution to the problem of encoding natural visual inputs

[4]. Downstream visual neurons [1,2,5–8,10,62–67] and, indeed,

neurons in the other sensory systems [68] display adaptive

properties similar to those recorded in photoreceptors. A model

in the spirit of the DA model may be suitable for these. What

refinements or elaborations of the DA model would then be

required—more complicated temporal filters? a broader range of

time scales? a more involved form of the non-linearity? several

non-linear stages?—is itself an interesting question.

Methods

Fitting the DA Model to Data
Since the pioneering work of Hodgkin and Baylor [13,69],

standard functional forms have been used to fit the impulse

response of visual neurons, and we found that these forms indeed

appropriately fit all the data we examined. By convention, we

require that the filters Ky tð Þ and Kz tð Þ each integrate to unity. For

Ky tð Þ, we adopted the form

Ky tð Þ~ tny

ny!t
nyz1
y

e{t=ty h tð Þ, ð12Þ

where ty specifies the time scale of the linear response, ny specifies

its ‘rise’ behavior, and h is the Heavyside function with h tð Þ~0 if

tƒ0 and h tð Þ~1 if tw0. This filter corresponds to a sequence of

nyz1 simple relaxation equations in time, as may occur in the

phototransduction cascade. While other, more involved choices

may yield a closer quantitative agreement with data, we found that

a similar form for Kz tð Þ, with the added twist that it combines two

time scales, is satisfactory. Specifically, throughout we used the

form

Kz tð Þ~c
tny

ny!t
nyz1
y

e{t=ty h tð Þz 1{cð Þ tnz

nz!t
nzz1
z

e{t=tz h tð Þ, ð13Þ

according to which z(t) involves a fast component that responds

on the time scales of the linear response, ty, and a slow component

that responds on a somewhat longer time scale, tz. The prefactors,

c and 1{c, weigh the relative importance of the two components

and ensure normalization to unity.

Throughout, we integrated the DA model with standard

techniques in Matlab (Mathworks, Natick, MA). We fit our model

parameters separately to each of the three data sets we used, from

the experiments of Baylor, Hodgkin, and Lamb [13–15], the

experiments of Burkhardt [18], and the experiments of Daly and

Normann [16]. We used a gradient descent method in Matlab to

find the parameter sets that yielded the least squared error from

the experimental results. Fits performed with different initial

conditions yielded similar parameter minima. In the case of the

Baylor, Hodgkin, and Lamb data, the fit was performed to the

voltage traces in Figure 2A (extracted from Ref. [14]). All eight

parameters of the model, tr, ty, tz, a, b, c, ny, and nz, were varied

in the minimization procedure. For the Burkhardt data, the

optimized parameters were determined from the family of curves

in Fig. 5D (extracted from Ref. [18]). The parameters a, b, c were

varied; because these data represented not traces but amplitudes,

the remaining parameters had little effect on the fit and were set to

typical values before the fitting routine was applied. For the Daly

and Normann data, the fit was performed on the flash response

traces in Fig. 5A (extracted from Ref. [16]). All eight parameters of

the model, tr, ty, tz, a, b, c, ny, and nz, were again varied to find

the least squared error between the DA model responses and

experimental flash responses. The value of a was adjusted from

experiment to experiment within the same data source, to match

the scale. Nonetheless, a remained in the vicinity of

2 mV?mm2?ms/photon (see Table 2), where we have assumed a

cone cross-section of 1 mm2. This value of a yields a peak dark
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Figure 10. Behavior of the DA model for different parameter values. (A) and (B) Families of responses to a flash in different light
backgrounds. We use the BHL parameter set as default parameter set, with changes in c and tz as indicated. The flash intensities take the values
4:10=b, 2:102=b, 2:103=b, 2:104=b, 2:105=b, with the background light intensities ranging from 20=b to 2:105=b by factors of 10, respectively. (A) and
(B) represent identical curves; traces were normalized by their peak values in (B) so that shapes can be compared. As c increases from 0 to 1, the
shape of the saturated curves remain unchanged, but the onset of the non-linearity and the amplitude of the curve are affected. As tz increases, the
second, overshoot lobe becomes shallow, and hence more difficult to observe (especially in the potential presence of noise). (C) Comparison of the
three sets of model parameters used to fit data. Responses to a flash superimposed upon a light background are displayed for different background
intensities. In each panel, the five curves correspond to background intensities increasing from from 4:10{2=b to 4:102=b by factors of 10; the
associated flashes occur at time 0, last for 1 ms, and have unit Weber contrast, i.e., have equal intensity to that of the background. We note that the
value of gamma in the BHL panel is higher than in other panels likely because it was fit only to flash responses in the dark, so that amplitude shifts at
high background were not included in the fitted data. (D) DA model responses to a weak flash against a dim background (green, bb~0:1), a weak
flash against a bright background (red, bb&1), and an intense flash against a bright background (blue, bb&1). Note that, in the presence of a bright
background, zero crossings always occur at the same point and, despite the 400-fold difference in flash strength, the intense-flash response is only 5-
fold greater than the weak-flash response.
doi:10.1371/journal.pcbi.1003289.g010
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hyperpolarization of ,15 mV/photon in agreement with experi-

mental observations. The optimized parameter sets are recorded

in Table 2. For Fig. 2F, where the experimental flash intensity was

unspecified, the flash intensity, rather than a, was adjusted so as to

obtain response strengths comparable to the data. Figure 10C

displays the flash response for different values of the background

light intensity, for each of the three parameter sets used in fitting

the data. Again, we emphasize that the results are robust with

respect to parameter changes and fits by eye resulted in similar

parameters and goodness of fit. The values of b and c determine

the location of the crossover to a non-linear behavior, as well as

the relative strength of the effect, but have relatively little effect

upon the shape of saturated flash responses (see Fig. 10A and B).

For Fig. 8, the light intensity time series was extracted from van

Hateren’s recordings of naturalistic stimuli [50] and the goldfish

cone response was digitized from Ref. [49]. In calculating the DA

model output, the parameters a, b, c were fit to the goldfish cone

traces for Fig. 8A, where we used a mean light intensity of 1.5?105

photons/mm2=s (&1=3bgoldfish) [49]; the BHL time scales were

used in the model as the low temporal resolution of the digitized

trace did not allow for a more precise temporal fit. For Figs. 8B, C,

and D, parameter set B was used together with a mean light

intensity of 8:104 photons/mm2=s (&10=b). The gain was probed

by superimposing 1 ms flashes containing 100 photons on top of

this fluctuating light background. Flash responses were found by

subtracting the response to the naturalistic time series from the

response to the same time series with superimposed light flashes.

Salamander Experiments and Analyses with LN and DA
Models

Salamander retinæ were exposed to whole-field flicker of time-

varying intensity while a sharp electrode voltage recording was

made of cone cells, following the protocol of Ref. [8]. Flicker was

presented with a CRT at 67 Hz, with a mean light intensity of ,
10mW/m2. Intensities were updated every 2 frames and chosen

from a Gaussian distribution with standard deviation equal to 35%

of the mean. All data integration and analysis were performed with

custom-written routines in Matlab. (We provide some of these

codes as online supplementary material.)

LN model analysis. Best-fit linear filters were found using cross-

correlation methods, as described in Ref. [8]. A 500 ms filter was

used to produce the linear portion of the LN model output,

followed by a third degree polynomial fit of that output to the

experimental response. In order to compute the quantities in

Figs. 6G–I, windows of 300 ms were selected every 100 ms during

stimulus presentation. We computed the mean light intensity over

each window as well as the ‘instantaneous gain’. The instanta-

neous gain at a given time was defined as the slope of the scatter of

the experimental response when it was plotted against the linearly

filtered signal, with scatter points extracted from the trace over the

150 ms windows flanking the time in question (Fig. 6G). We

averaged the instantaneous gain over each of the 300 ms time

windows to obtain an effective gain associated with a time window

as a whole (Fig. 6H). These 300 ms (zero-padded) windows were

used to find the peak cross-correlation times of stimulus with

response (Fig. 6H) and the linear filters displayed in Fig. 6I. Peak

correlation time, for each average of cross-correlations, was

defined as the average of the 10 times of maximum correlation.

In Fig. 6I, we selected the time points with lowest, middle, and

highest instantaneous gains, and plotted the filters corresponding

to each of the three subsets of data.

DA model analysis. Model parameters were fit to the salamander

data (Fig. 6B) with a least squares minimization routine in Matlab

and Eq. (2) was integrated with the use of standard methods in

Matlab, with the functional forms described above. All parameters

(a, b, c, ny, nz, tr, ty, and tz) were varied, but ny and nz were

imposed to take integer values. The parameters used to fit

salamander data are recorded in Table 2.

Analysis of statistical significance. To assess the significance of the

difference in slopes, we applied a Monte Carlo shuffle analysis, in

which we ran the slope fitting routine 3000 times, each time

offsetting the stimulus and response by a random temporal delay,

using circular boundary conditions. The p-value was calculated as

the frequency with which a difference in slopes occurred with

absolute value greater than the one measured in the absence of

temporal shift. This same random shuffle method was used to

assess the timing differences measured in Fig. 6I, using a random

shift in the instantaneous gain value, so as to randomly select

stimulus-response snippets. These snippets were used to estimate

the peak cross-correlation (as in Fig. 6H), and establish an

estimated p-value for the difference.

General Analytical Solution of the DA Model
The DA model (defined by Eqs. (2, 3, 4) above) is solved exactly

for any input, by

r tð Þ~
ðt

{?

dt’
tr

ay t’ð Þexp {

ðt

t’

dt’’
tr

1zbz t’’ð Þ½ �
� �

ð14Þ

((Eq. (7) above), where y tð Þ and z tð Þ are defined in Eqs. (3, 4). In

the case of deterministic inputs such as flashes or steps, this

expression can be evaluated readily analytically or numerically. In

the case of random inputs, we evaluate this expression for a given

instantiation of the noise and then take an average over

instantiations. (It is possible to calculate higher moment, such as

the variance of _, or the distribution of the response as a whole, in

a similar manner, but we do not present the corresponding

calculations here.

In some instances below, we compute model photoreceptor

responses with the simplifying assumption of small tr. In this limit,

the DA model becomes an algebraic equation which can be solved

immediately:

r tð Þ~ ay tð Þ
1zbz tð Þ : ð15Þ

Results derived in this limit hold also in the case of bright

backgrounds.

In order to establish the notation, we now write down the most

general input we shall consider here. It is made up of a constant

light background, b, a fluctuating (random) background, g tð Þ, and

a flash of intensity f presented at t~0:

s tð Þ~bzg tð Þzf d tð Þ: ð16Þ

We assume that

g tð Þ~s tð Þ~gg tð Þ, ð17Þ

where ~gg tð Þ is a Gaussian random variable with temporal

correlation

S~gg tð Þ~gg t’ð ÞT:x t{t’ð Þ~x t{t’j jð Þ ð18Þ

normalized such that
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x 0ð Þ~1, ð19Þ

and s tð Þ is a deterministic envelope. We shall consider three

different cases for the deterministic envelope:

N s tð Þ~0 (no flickering background),

N s tð Þ~ constant (flickering background with fixed variance),

N s tð Þ~ periodic wave (flickering background with alternating

variance).

Note that, with the stimulus in Eq. (16), the filtered quantities

read

y tð Þ~bz

ðt

{?
dt’Ky t{t’ð Þg t’ð ÞzfKy tð Þ, ð20Þ

z tð Þ~bz

ðt

{?
dt’Kz t{t’ð Þg t’ð ÞzfKz tð Þ, ð21Þ

where the kernels Ky tð Þ and Kz tð Þ are defined in Eqs. (12, 13)

above.

Solutions of the DA Model for Deterministic Inputs
Response to a small flash against a general light

background. We calculate the response to a small flash of

light, perturbatively in the intensity of the flash. To lowest order,

the reduced equation for the response to a small flash, defined as

rflash tð Þ:r tð Þ{rf ~0~r tð Þ{ ab

1zbb
, ð22Þ

becomes

trLt rf lash tð Þ½ �~af Ky tð Þ{ bb

1zbb
Kz tð Þ

� �
{ 1zbbð Þrflash tð Þ: ð23Þ

Thus, the response to a small flash of intensity f (which measures

the total number of photons absorbed by the model photoreceptor)

against a background of intensity b (which measures the number of

photons absorbed per unit time) is simply a low-passed version of

the pulse

~KK tð Þ: af

1zbb
Ky tð Þ{ bb

1zbb
Kz tð Þ

� �
ð24Þ

over a time scale

teff:
tr

1zbb
: ð25Þ

In dim backgrounds (bb%1), the response is monophasic and

close to

rf lash tð Þ& af

1zbb
Ky tð Þ: ð26Þ

In bright backgrounds (bb&1), the response becomes biphasic and

converges to the perfect biphasic pulse,

rflash tð Þ~ af

1zbb
Ky tð Þ{Kz tð Þ
� �

, ð27Þ

which integrates to zero, in very bright backgrounds. Thus, in dim

backgrounds the photoreceptor integrates incoming photons over

the time scale of Ky tð Þ, while in bright backgrounds the

photoreceptor behaves as a differentiator over the time scales of

Ky tð Þ and Kz tð Þ. (Note that the delay Kz tð Þ relative to Ky tð Þ is

paramount to this behavior.) Equivalently, a dark-adapted model

photoreceptor is low-passing while a light-adapted model photo-

receptor is band-passing.

Figure 1A illustrates the kernels Ky and Kz and Fig. 10D

exhibits flash responses in dim and bright light-adapted conditions.

Response to a general flash against a bright

background. In bright backgrounds (bb&1), the effective time

scale, teff , becomes negligible and, consequently, the DA model

reduces to the simpler algebraic form

r tð Þ~ ay tð Þ
1zbz tð Þ&

a

b

y tð Þ
z tð Þ : ð28Þ

The flash response (as defined above in Eq. (22)) then becomes

rflash tð Þ& a

b

f

b

Ky tð Þ{Kz tð Þ
1z f

b
Kz tð Þ

: ð29Þ

There are several qualitative statements one can extract from this

expression. First, in bright backgrounds the response depends only

upon the ratio f =b (not upon f and b independently). Second, the

time of the node of the biphasic response (given by Ky tð Þ~Kz tð Þ)
does not change with either f or b. Third, for large flashes the

response reduces to a fixed profile,

rf lash tð Þ& a

b

Ky tð Þ{Kz tð Þ
Kz tð Þ , ð30Þ

over the time window in which Kz tð Þ&b=f . (See Fig. 10D.)

Solutions of the DA Model for Randomly Fluctuating
Inputs

The general solution of the DA model, Eq. (7), can be rewriten

as

r tð Þ~Ll

ðt

{?

dt’
tr

a exp ly t’ð Þ{
ðt

t’

dt’’
tr

1zbz t’’ð Þ½ �
� �� �����

l~0

ð31Þ

or as

r tð Þ~Ll

ðt

{?

dt’
tr

a exp A t,t’ð Þð Þ
� �����

l~0

, ð32Þ

with

A t,t’ð Þ~ly t’ð Þ{
ðt

t’

dt’’
tr

1zbz t’’ð Þ½ �: ð33Þ

The average response, over instantiations of the flicker, is then

given by
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Sr tð ÞT~SLl

ðt

{?

dt0

tr

a exp A t,t0ð Þð Þ
� �����

l~0
T ð34Þ

~Ll

ðt

{?

dt’
tr

aSexp A t,t’ð Þð ÞT
� �����

l~0

: ð35Þ

Since all random variables in the problem are linear sums of

Gaussian variables, we have

Sexp A t,t’ð Þð ÞT~exp SA t,t’ð ÞTz
1

2
S A t,t’ð Þ{SA t,t’ð ÞT½ �2T

� �
:ð36Þ

After replacing the variables y tð Þ and z tð Þ by their expressions in

terms of inputs and filters, Eqs. (20, 21), and performing the

Gaussian averages, we obtain the average response

Sr tð ÞT~

ðt

{?

dt’
tr

a bzfKy t’ð Þh t’ð Þ{bQyz t’,tð Þ
� �

|exp { 1zbbð Þ t{t’
tr

{bf ~KKz t’,tð Þz 1

2
b2Qzz t’,tð Þ

� �
,

ð37Þ

where

h tð Þ~
0 if tv0

1 if t§0

	
, ð38Þ

~KKz t’,tð Þ~
ðt

t’

dt’’
tr

Kz t’ð Þh t’ð Þ, ð39Þ

Qyz t’,tð Þ~
ðt

t’

dt1

tr

ðt’

{?
dt2

ðt1

{?
dt3Ky t’{t2ð ÞKz t1{t3ð Þ

|s t2ð Þs t3ð Þx t2{t3ð Þ,
ð40Þ

Qzz t’,tð Þ~
ðt

t
0

dt1

tr

ðt

t
0

dt2

tr

ðt1

{?
dt3

ðt2

{?
dt4Kz t1{t3ð ÞKz t2{t4ð Þ

|s t3ð Þs t4ð Þx t3{t4ð Þ:
ð41Þ

This average response includes a tonic component, the baseline

response to the constant background, and a phasic component, the

flash response. Because of the non-linearity in the DA model, both

components are modulated by the flicker, as compared to the

deterministic case.

Hereafter, we examine this solution in two cases: flicker with

constant variance and flicker with periodically varying variance.

We answer the following question: How does flicker affect the

phasic and tonic components of the model photoreceptor

response?

Modulations of the mean response and flash response by

flicker with constant variance. For time-independent flicker,

we have

s tð Þ~s~constant ð42Þ

(Fig. 11A).

The phasic response (i. e., the average flash response in the

presence of flicker) is defined as

Srflash tð ÞT~Sr tð ÞT{Sr tð ÞTf ~0 ð43Þ

and can be extracted from Eq. (37) similarly to Sr tð ÞT, above. For

the sake of simplicity, we consider the limit of a bright background

and small flash and flicker standard deviations. Our calculations

are carried out to lowest non-trivial orders in f and s. Expanding

Eq. (37) is these limits, we obtain

Srflash tð ÞT~
af

1zbb

| 1z
bs

1zbb

� �2

qzz

" #
Ky tð Þ{ bb

1zbb
Kz tð Þ

� �(

z2
bs

1zbb

� �2

qyz{
bb

1zbb
qzz

� �
Kz tð Þ

)
,

ð44Þ

where

qyz~

ð?
0

dt1

ð?
0

dt2Ky t1ð ÞKz t2ð Þx t2{t1ð Þ, ð45Þ

qzz~

ð?
0

dt1

ð?
0

dt2Kz t1ð ÞKz t2ð Þx t2{t1ð Þ ð46Þ

(Fig. 11C). These quantities measure an ‘effective overlap’ of the

linear filters, weighed by the temporal correlation function of the

flicker. If the flicker is correlated over short time scales, then qyz and

qzz are true overlaps of the filters and, since Kz is delayed with respect

to Ky, qzyƒqzz. If the flicker is correlated over long time scales, then

the integrals decouple and qzy&qzz&1. As compared to the flicker-

free case, the flash response is boosted by a multiplicative factor

bs

1zbb

� �2

qzz ð47Þ

and it acquires an additive contribution equal to

2
af

1zbb

bs

1zbb

� �2

qyz{
bb

1zbb
qzz

� �
Kz tð Þ: ð48Þ

We note that the multiplicative term is always positive, and hence

corresponds to a gain enhancement due to flicker. Also, since the

quantities qyz and qzz depend upon the temporal correlation of the

flicker, so will the flash response (Fig. 11D). In other words, the model

photoreceptor adapts to both the magnitude and the temporal

structure of the input.

It is instructive to consider the limit of small tr in order to intuit

this result. In that limit, the (unaveraged) flash response reads

rflash tð Þ~ af

1zb bzzfKz tð Þ½ � Ky(t){
bby

1zbbz

Kz(t)

� �
, ð49Þ

where we have introduced the quantities

by:bz

ðt

{?
dt’Ky t{t’ð Þg t’ð Þ, ð50Þ
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Figure 11. Behavior of DA model responses in the presence of Gaussian fluctuating inputs. All calculations in this figure use
parameter set B. (A) Top: A sample Gaussian input with correlation time of 200 ms. Middle: Model responses for three different contrasts of the
fluctuating input. The mean input intensity is given by bb~16. Bottom: After normalization of the response by the input’s standard deviation, one can see
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bz:bz

ðt

{?
dt’Kz t{t’ð Þg t’ð Þ: ð51Þ

These are fluctuating backgrounds that modulate the overall gain

and the magnitude of the overshoot. The overall gain prefactor,

af 1zb bzzfKz tð Þ½ �f g{1
, is a concave function of bz. As a result,

when bz fluctuates about its mean value, b, the average gain is

enhanced as compared to the flicker-free case with bz~b

(Fig. 12A). The modulation of the overshoot behaves in a subtler

manner, because it involves both by and bz. Since the same term

governs the behavior of the mean (tonic) response of the model

receptor, we return to this discussion below (see also Fig. 12B).

But before treating the mean response, we mention that a

generalized version of the result in Eq. (44) which includes the full

non-linear contribution of the flash intensity may be derived from

Eq. (49). To the first non-trivial order in the flicker, we obtain

Srflash tð ÞT~
af

1zb bzfKz tð Þ½ �|

| 1z
bs

1zb bzfKz tð Þ½ �

	 
2

qzz

 !
Ky tð Þ{ bb

1zbb
Kz tð Þ

� �(

z
bsð Þ2

1zbb

1

1zbb
z

1

1zb bzfKz tð Þ½ �

	 

|

| qyz{
bb

1zbb
qzz

� �
Kz tð Þ



:

ð52Þ

This result corroborates that in Eq. (44) and extends it to cases of

large flash intensity.

The tonic response (i. e., the mean response to constant

background plus flicker) is defined as

Srmean tð ÞT~Sr tð ÞTf ~0 ð53Þ

and can also be extracted from Eq. (37). In the presence of flicker,

it acquires a flicker-dependent contribution and is calculated as

Srmean tð ÞT~
ab

1zbb
1{

bb

1zbb

s

b

� �2

qyz{
bb

1zbb
qzz

� �� �
ð54Þ

(Fig. 11B). Depending upon the intensity of the background, b, the

temporal structure of the kernels, and the relative magnitude of the

fast and slow components in the kernel Kz tð Þ (prescribed by the

parameter c), the flicker-dependent contribution may suppress or

enhance the mean response.

signatures of the model’s non-linearity as the curves do not collapse unto a single curve. (B) Mean response of a model photoreceptor presented with
Gaussian flickers with three different contrasts: analytical and numerical results. Larger contrasts yield less hyperpolarized responses, on average. Black dots:
numerical result; red curve: analytical result. (C) Mean flash responses of a model photoreceptor in the presence of Gaussian flickering backgrounds with
different variances. Top: Average flash responses were calculated numerically by running simulations with two different stimuli: one with Gaussian flicker
only, the other with Gaussian flicker and superimposed flashes. The average flash response was obtained as the difference between the two outcomes,
averaged over flicker instantiations. Bottom: The fractional difference between flash responses in the presence of Gaussian flicker with three different
contrasts. Solid lines: numerical result (61 SEM error bars); dotted lines: analytical result. (D) Fractional change in average flash response as a function of
flicker correlation time. From Eqs. (44, 45, 46), the magnitude of the average flash response depends upon the correlation time of the random flicker. Black
dots: numerical result; red curve: analytical result. (E) Responses of a model photoreceptor in the presence of flicker with time-varying contrast. We fed the
DA model Gaussian flicker with standard deviation alternating between 35% and 5%, with a 1 second period (top). Average flash responses were calculated
at different times during the period (middle), as was done in (C). Sample average flash responses are displayed in the inset panel, while the main panel
shows the variation of the flash response amplitude across one period. Black curve: numerical result (61 SEM error bars); red curve: analytical result. The
average response (bottom) was also calculated numerically (black, 61 SEM) and analytically (red). Note the overshoots of the average response following
contrast switches (see the text for an explanation).
doi:10.1371/journal.pcbi.1003289.g011

Figure 12. Illustration of the non-linear transformation of
fluctuating inputs. (A) A concave functional form, as that of the gain
prefactor in the flash response (Eq. (49)), increases the mean in the
transformation. That is, downward fluctuations in bz contribute more to
increasing f (bz) than upward fluctuations to decreasing it. Therefore,
Sf (bz)Twf (SbzT). The flash response gain in the presence of a
fluctuating background is thus larger than that in the presence of a
constant, mean-matched background. (B) A convex functional form
decreases the mean in the transformation, so that Sg(bz)Tvg(SbzT).
Depending upon the strength of the background, bb, and the relative
structure of the two kernels, Ky and Kz, the mean response to a
fluctuating input may be either suppressed or enhanced compared to
the flicker-free case. The DA model (see, e. g., Eq. (55)) takes on the
convex form shown here as g(bz) in the case with Ky*Kz (and bbv1),
thus decreasing the mean response relative to that in the presence of a
constant input. In the case in which Ky and Kz differ in their timing, the
functional form becomes concave as in (A) and the mean response to a
fluctuating input is enhanced. The modulation of the mean response
therefore depends sensitively upon stimulus and kernels parameters.
doi:10.1371/journal.pcbi.1003289.g012
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In order to intuit this result, it is again useful to study the limit of

small tr, in which the (unaveraged) flicker-dependent part of the

response is expressed as

rmean tð Þ{ ab

1zbb
~

a jy{
bb

1zbb
jz

� �
1zb bzjzð Þ , ð55Þ

where we have introduced the quantities

jy:
ðt

{?
dt’Ky t{t’ð Þg t’ð Þ, ð56Þ

jz:
ðt

{?
dt’Kz t{t’ð Þg t’ð Þ: ð57Þ

(Fig. 11A). One can think of the mean response as a cumulative

response to a succession of many bright and dark flashes with

random intensities. The usual, linear, bi-lobe response,

jy{
bb

1zbb
jz, is modulated by the denominator, 1zb bzjzð Þ. It

is easy to understand the behavior of rmean tð Þ by sketching the

form of the bi-lobe response together with the form of the non-

linear modulation. An important point is that this modulation is

asymmetric for bright and dark flashes. If the background

intensity, b, is low or if the kernel Kz tð Þ is not too different from

the kernel Ky tð Þ, then, on average, the mean response is suppressed

compared to the flicker-free case (see Fig. 12B). If the background

intensity, b, is high or if the kernel Kz tð Þ is significantly delayed

with respect to the kernel Ky tð Þ, then, on average, the mean

response is enhanced compared to the flicker-free case (see Fig. 12).

Modulations of the mean response and flash response by

flicker with time-varying variance. Here, the flicker ampli-

tude, s tð Þ, depends upon time. For now, we assume a general

function; below, we focus on the special case of a periodic function

(Fig. 11E). The analytical treatment is very similar to the case of

constant-variance flicker, so here we confine ourselves to quoting

the main results.

The phasic response (i. e., the average flash response in the

presence of flicker) reads

Srflash tð ÞT~
af

1zbb

| 1z
bs

1zbb

� �2

qzz tð Þ
" #

Ky tð Þ{ bb

1zbb
Kz tð Þ

� �(

z2
bs

1zbb

� �2

qyz tð Þ{ bb

1zbb
qzz tð Þ

� �
Kz tð Þ

)
,

ð58Þ

where

qyz tð Þ~
ð?

0

dt1

ð?
0

dt2Ky t1ð ÞKz t2ð Þx t2{t1ð Þ

|s t{t1ð Þs t{t2ð Þ,
ð59Þ

qzz tð Þ~
ð?

0

dt1

ð?
0

dt2Kz t1ð ÞKz t2ð Þx t2{t1ð Þ

|s t{t1ð Þs t{t2ð Þ
ð60Þ

(Fig. 11E). Equation (58) reduces to Eq. (44) if the standard

deviation of flicker is constant. Similarly to the constant-variance

case, Eq. (58) implies that the flash response increases by a time-

dependent multiplicative factor

b

1zbb

� �2

qzz tð Þ ð61Þ

and acquires a time-dependent additive contribution equal to

2
af

1zbb

b

1zbb

� �2

qyz tð Þ{ bb

1zbb
qzz tð Þ

� �
Kz tð Þ: ð62Þ

The tonic response (i. e., the mean response to constant

background plus flicker) becomes

Srmean tð ÞT~
ab

1zbb
1{

1

1zbb

b

b
qyz tð Þ{ bb

1zbb
qzz tð Þ

� �	 

ð63Þ

(Fig. 11E). Equation (63) reduces to Eq. (54) if the standard

deviation of flicker is constant. For large background intensity, b,

Eq. (63) becomes

Srmean tð ÞT~
a

b
1z

1

b2
qzz tð Þ{qyz tð Þ
� �	 


: ð64Þ

In Results, we consider the particular case of a periodic, square-

wave envelope of the flicker, with standard derivation that switches

between a low value, sv, and a high value, sw. Equation (64)

implies that, when sv switches to sw, the tonic response

undergoes an overshoot; this is because the peak of qzz tð Þ is

delayed with respect to that of qyz tð Þ.

Supporting Information

File S1 DA_model_script.txt. This document is a Matlab

script designed to run with File S2. It demonstrates some of

the features of the DA model, and provides an implementa-

tion of the model. Informative comments are included in the

code.

(TXT)

File S2 DA_integrate.txt. This document implements the

dynamical adaptation model in Matlab, using structures defined in

File S1. PLoS Computational Biology does not recognize *.m files

for supplemental material; in order to work, users must change the

‘txt’ suffix, in both file names, to ‘m’.

(TXT)
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