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We rely on our visual system to cope with the vast barrage of incoming light patterns and to extract features
from the scene that are relevant to our well-being. The necessary reduction of visual information already
begins in the eye. In this review, we summarize recent progress in understanding the computations per-
formed in the vertebrate retina and how they are implemented by the neural circuitry. A new picture emerges
from these findings that helps resolve a vexing paradox between the retina’s structure and function. Whereas
the conventional wisdom treats the eye as a simple prefilter for visual images, it now appears that the retina
solves a diverse set of specific tasks and provides the results explicitly to downstream brain areas.
Introduction
The retina is a neural circuit of marvelous anatomical complexity

that famously fascinated Cajal (Cajal, 1893) and has since drawn

many researchers into its spell. Every technical advance in

microscopy, imaging, or cell labeling has further reinforced the

message of intricacy and precision in the retina’s wiring. At last

count, the network is composed of at least 50 clearly distinct

cell types (Masland, 2001b) (Figure 1A). They differ widely in

shape, from very local neurons tens of micrometers in size to

some whose processes span clear across the eye. The neurons

are arranged in three cellular layers and are interconnected in the

intervening two synaptic layers (Figures 1B and 1C). On a finer

scale, one finds finer structure: within the inner plexiform layer,

one can distinguish at least ten thin sublayers, and the processes

of a given cell type are often restricted to just one of these

(Wu et al., 2000; Wässle, 2004). On the single-neuron scale,

one finds even greater specificity; for example, the blue ON

bipolar cell connects only to blue cones, even though these

form a tiny minority among photoreceptors (Dacey and Packer,

2003; Haverkamp et al., 2005). The retina’s output is conveyed

to the brain by many different ganglion cell types, numbering

about 15 in mammalian retinas. The population from each type

covers the visual field and thus conveys a complete but pro-

cessed visual image (Wässle, 2004). Much of this intricate and

specific structural organization is conserved from mouse to

man, indicating that it serves a continuing computational

purpose common to many animals.

But what is that purpose? Most vision researchers will argue

that the retina’s principal function is to convey the visual image

through the optic nerve to the brain, where the cortex can bring

a great deal of clever circuitry to bear on it. They may acknowl-

edge that light adaptation is an important retinal function, akin

to an automatic gain control. On further thought, the retina also

implements some lateral inhibition—embodied by the center-

surround antagonism in the ganglion cell’s receptive field—to

sharpen the image in space and also in time. This picture of
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the retina as a simple spatiotemporal prefilter is espoused

almost universally by textbooks and review articles (including

one by a present author: Meister and Berry, 1999). And it is adop-

ted, at least implicitly, by virtually all neuroscientists who work in

visual areas beyond the retina, where the truly sophisticated,

heavy-duty computations are thought to take place. Yet the

paradox is clear: to implement simple functions, like light adap-

tation and image sharpening, there is no need for 50 neuron

types with fantastically intricate network structure. In fact, the

retina of the horseshoe crab accomplishes all this already within

the layer of photoreceptors (Ratliff and Hartline, 1959; Fuortes

and Hodgkin, 1964). What are the other 49 cell types doing in

the vertebrate retina?

There is a distinct possibility that we haven’t yet understood

what the retina is for. What if it is not merely a sharpening filter

for a cable to the visual cortex? Perhaps each of the many

ganglion cell types already computes something rather specific

about the visual scene. Each type would then need a dedicated

neural circuit to extract the visual feature of interest. In this

picture, the downstream areas in the brain receive not a generic

pixel representation of the image, but a highly processed set of

extracted features. Indeed, there is a well-known example of

this kind of processing: the direction-selective ganglion cell.

These neurons respond strongly to moving stimuli, such as trav-

eling spots or bars, but they greatly prefer one direction of

motion over the others (Barlow et al., 1964; Taylor and Vaney,

2003; Demb, 2007). The phenomenology is remarkable; for

example, only a tiny movement of the spot through 1/10 of the

cell’s receptive field is needed to elicit the direction-selective

response. Now there is something distinctly different about this

direction-selective processing compared to a center-surround

prefilter. First, it computes a specific feature of the visual input,

namely the direction of movement within the receptive field.

Second, as a result of this specificity, a good amount of stimulus

information is discarded; for example, the cell does not fire at all

for certain directions, regardless of the details of the moving
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Figure 1. Retinal Circuitry
(A) Diversity of retinal cell types. For all five classes of retinal neurons—photoreceptors (P), horizontal cells (H), bipolar cells (B), amacrine cells (A), and ganglion
cells (G)—a number of types can be identified according to morphological characteristics and dendritic stratification patterns. The image shows the major cell
types of a typical mammalian retina. Reprinted with permission from Masland, 2001a.
(B) Specificity of retinal wiring. Double immunostaining for calbindin (red) and calretinin (green) in a vertical section of mouse retina (Haverkamp and Wässle, 2000)
visualizes some of the structure and complexity of the retinal network. The staining labels horizontal cells, certain amacrine cells in the inner nuclear layer (INL),
and some ganglion cells in the ganglion cell layer (GCL). The interposed outer and inner plexiform layers (OPL and IPL) are the sites of massive and often very
specific synaptic contacts between the various cell types. For example, the labeled amacrine cells and ganglion cells extend their dendrites into three distinct thin
strata of the IPL, which underscores the specificity of retinal microcircuits. Reprinted with permission from Haverkamp and Wässle, 2000; see also Wässle, 2004.
(C) Schematic drawing of connections between the basic cell classes. The neurons in the retina are connected through chemical synapses that are either sign
preserving (excitatory, closed circles) or sign inverting (inhibitory, open circles). In addition, one finds a considerable amount of electrical coupling between cells
via gap junctions within all cell classes (data not shown) and across some types of cells (marked by resistor symbols). The input into the network is incident light,
which hyperpolarizes the photoreceptors. The connections from photoreceptors to bipolar cells are of either sign, producing both OFF-type and ON-type bi-
polars. Horizontal cells provide negative feedback and lateral inhibition to photoreceptors and bipolar cells. Bipolar cells are reciprocally connected to amacrine
cells with chemical synapses and, for some types, through electrical gap junctions. Ganglion cells represent the output layer of the retina; their axons form the
optic nerve. They collect excitation from bipolar cells and mostly inhibition from amacrine cells. In addition, ganglion cells and amacrine cells can be electrically
coupled. This general connectivity sets the framework for any specific retinal microcircuit.
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object. Third, the result of the computation is represented explic-

itly in the response of the cell. Firing versus not-firing indicates

whether the spot moves one way or the other. Finally, no ‘‘higher

processing’’ is needed to extract the information. For example,

a downstream neuron could obtain the exact angle of the spot’s

trajectory simply by pooling the firing of various direction-selec-

tive ganglion cells in a weighted summation.

Here we explore the notion that this kind of processing, namely

the selective computation of specific stimulus features, is not the

exception but the rule in retinal function. In doing so, we will

repeatedly encounter the above-mentioned characteristics of

task specificity, selective encoding of information, and explicit

straightforward representation. At the core of these abilities lie

certain strongly nonlinear processing steps, and identifying

these key nonlinearities gets to the heart of the retina’s compu-

tations. The popular concept of linear spatiotemporal prefiltering

may well apply to particular kinds of retinal ganglion cells under

certain conditions; but in other cases, the classic center-

surround receptive field reflects a crude average of the ganglion

cell’s behavior under stimuli that fail to probe its function prop-

erly. As we will see, it helps to work with visual stimuli that

somehow reflect the actual challenges the visual system faces

in its natural environment. In a search for general computational

abilities of the vertebrate retina, we will focus on visual tasks rele-

vant to all species: detecting light at low intensity; dealing with

image motion caused by objects in the scene or the movement

of the observer; and adapting to changing visual environments.

Because of the generic nature of these tasks, we will freely

discuss results obtained from different animal models.
Light Detection
The most straightforward task of the visual system is the detec-

tion of dim lights. Human observers can sense a flash of light

even at very low intensities that lead to only a handful of suc-

cessful photon absorptions in the retina (Hecht et al., 1941;

Sakitt, 1972). Correspondingly, rod photoreceptors display small

responses to single photon absorptions, �1 mV in amplitude

(Baylor et al., 1979; Schneeweis and Schnapf, 1995), and retinal

ganglion cells can indeed signal these events to the brain (Barlow

et al., 1971). A ganglion cell typically collects inputs from many

hundreds of rods (Sterling et al., 1988). Thus, the computational

challenge for the retina lies in separating the small single-photon

signal in one or a few rods from the continuous electrical noise

that is present in all photoreceptors. Indeed the problem arises

already at the first stage of convergence, where the rod bipolar

cell collects the outputs from tens of rods via graded synapses

(Freed et al., 1987; Tsukamoto et al., 2001). How the retina sorts

the sparse signal from the ubiquitous noise is beginning to be

understood.

The light-independent fluctuations in the rod’s membrane

potential are of two kinds. One, called ‘‘discrete noise,’’ results

from spontaneous thermal isomerization of the photopigment

(Baylor et al., 1980). These events are identical in all respects to

authentic single-photon signals and thus cannot be separated

out. In fact, human visual sensitivity at absolute threshold is likely

limited by this noise source (Barlow, 1956; Baylor, 1987). The

other kind, called ‘‘continuous noise,’’ arises from spontaneous

activations within the chemical transduction machinery down-

stream of photon absorption (Baylor et al., 1980). As a result, it
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has a different frequency spectrum from the single-photon signal.

This spectral difference could support a separation of signal from

noise by the method of temporal filtering: enhancing the frequen-

cies that primarily contain light signals and suppressing the

others. One can predict the optimal filter function for this task (Bia-

lek and Owen, 1990), and indeed a transformation of the predicted

type is observed in the transmission from rods to bipolar and hori-

zontal cells of the salamander retina (Armstrong-Gold and Rieke,

2003). The filter appears to be implemented presynaptically in the

rod through a combination of electrical coupling between rods

and calcium dynamics at the transmitter release sites.

The temporal filtering improves the signal-to-noise ratio for

photon events coming from a single photoreceptor. But still this

signal is threatened to be swamped by noise from other photore-

ceptors. If the rod bipolar cell combined activity linearly from all its

presynaptic rods, a single photon event would easily be lost in the

accumulated noise. Yet, the bipolar cell produces clear depolariz-

ing potentials in response to single-photon stimulation (Ashmore

and Falk, 1976; Field and Rieke, 2002). It had therefore been

proposed that the bipolar cell sums rod signals in a very nonlinear

fashion (Baylor et al., 1984; van Rossum and Smith, 1998).

This strategy has indeed been confirmed by studies on mouse

retina (Field and Rieke, 2002): the output of each rod photore-

ceptor is first thresholded before summation by the rod bipolar

cell. Rod signals below the threshold level are simply discarded,

and this affects some of the bona fide light responses as well:

around 50% (Berntson et al., 2004) to 75% (Field and Rieke,

2002) of single-photon events do not pass the synapse. But

this loss in signal is more than compensated by the reduction

in noise. In fact, the observed threshold is positioned nearly opti-

mally to maximize the signal-to-noise ratio in the rod bipolar cells

(Field and Rieke, 2002). As discussed above, it is essential that

the thresholding take place before the summation, to avoid the

summing of many noise signals. Indeed, the mechanism that

generates the threshold is found to be local to individual

synapses between rods and bipolar cells. In darkness, the

synapse is in a state of saturation so that some minimal level

of presynaptic activity is required before a postsynaptic depolar-

ization occurs (Sampath and Rieke, 2004). This aspect appears

to be unique to the rod-bipolar pathway, which is specialized

for detection at very low light levels. OFF bipolar cells, which

are distinct from rod bipolars but also receive input from rod

photoreceptors, respond to light stimuli in an approximately

linear fashion (Field and Rieke, 2002).

Schematically, the proposed neural circuit that achieves the

separation of dim light stimuli from noise thus consists of the

following elements (Figure 2A): signals from individual rods are

first temporally filtered, then rectified by a threshold mechanism,

and finally summed over many rods. This processing sequence

appears to be a useful basic circuit design; we will encounter it

repeatedly in the examples that follow. Here, it implements

a computation that results in a selective neuronal response

only if sufficient evidence is encountered that a photon event

has occurred.

Motion Detection and Discrimination
Beyond mere light detection, the visual system must interpret the

many spatiotemporal patterns in photoreceptor activation on the
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retina. Among the myriad possible input patterns, only a minus-

cule minority is ultimately of behavioral interest. A dominant

feature in the retinal input is image motion, which has two kinds

of sources. The first results because movement of body, head, or

eye of the observer induces global optic flow on the retina. This

image motion largely represents ‘‘noise’’ for the purpose of visu-

ally guided behavior, and though the brain has dedicated the

entire vestibulo-optic reflex pathway to reducing it, a significant

global image jitter remains at all times. The second kind results

from the motion of objects within the scene: for most intents,

this is the behaviorally relevant ‘‘signal.’’ We will see that the

retina contributes already to sorting this important signal from

the morass of distracting noise, just as it did in the context of

photon detection.

Texture Motion

When a textured image patch moves across the retina, it causes

an increase of light intensity at some points and a decrease at

others. To be sensitive to this motion signal, a circuit would

want to detect and integrate many such local changes. The

so-called ‘‘Y-type’’ ganglion cells seem to signal the result of

such a computation. These neurons fire when the texture moves,

and the activity is largely independent of the direction of motion

or the spatial layout of the moving pattern. Such ganglion cells

have been identified in many species (Enroth-Cugell and Rob-

son, 1966; Hochstein and Shapley, 1976; Caldwell and Daw,

1978; Kaplan and Shapley, 1982; Demb et al., 1999; Petrusca

et al., 2007).

A seemingly paradoxical feature of the Y cell is its sensitivity to

high spatial frequencies, for example gratings that are much finer

than the receptive field size. If the neuron simply pooled intensity

signals from points throughout its receptive field, the positive

and negative changes induced by grating motion should neatly

cancel out and produce zero response. Instead, the Y cell pools

inputs from smaller subregions in the receptive field whose

signals are individually rectified, which endows the Y cell with

its characteristic nonlinear response properties (Figure 2B).

There is good evidence now that the subfields correspond to

individual bipolar cells: these interneurons match the size of

the subfields (Demb et al., 1999; Dacey et al., 2000), and their

synaptic input to ganglion cells can indeed show strong rectifica-

tion (Demb et al., 2001).

This circuit explains qualitatively how the Y cell responds to

moving textures regardless of the direction or the spatial pattern.

Small features of the texture activate different subfields as they

move around. The subfields have strongly transient responses,

embodied in the biphasic shape of their impulse response

function (Figure 2B). This makes the subfields sensitive to local

changes, but not to static patterns. The nonlinear rectification

then allows accumulation of signals from many activated

subfields while preventing cancellation from other subfields

that experience nonpreferred stimulus changes. A time-varying

velocity of the image pattern leads to a time-varying firing rate,

and the simple Y cell circuit model (Figure 2B) can predict this

output quantitatively (Victor and Shapley, 1979; Enroth-Cugell

and Freeman, 1987; Ölveczky et al., 2003). The transformation

is dominated by the spatiotemporal receptive fields of bipolar

cells (Baccus et al., 2008). While this circuit encodes the velocity

signal reliably, it discards information about the spatial layout of



Figure 2. Computations Performed by the
Retina and Their Underlying Microcircuits
(A) Detection of dim light flashes in the rod-to-rod
bipolar pathway. (Left) Rod bipolar cells pool over
many rod photoreceptors, which show distinct
responses to single-photon activation embedded
in noise. Bipolar cell potentials are not swamped
by the accumulated noise in all rods, but instead
show distinct activations from single photons, as
shown by the voltage traces from a simple model
simulation. (Right) The important elements of
the corresponding retinal microcircuitry. Each
photoreceptor output is sent through a band-pass
temporal filter followed by a thresholding operation
before summation by the rod bipolar cell (Field and
Rieke, 2002). Notation for this and all circuit
diagrams: triangle, neuron; rectangle, temporal
filter function; oval, instantaneous rectifier; closed/
open circle, sign-preserving/inverting synapse.
(B) Sensitivity to texture motion. (Left) Y-type
ganglion cells show activation when a fine grating
shifts in either direction over the receptive field
(circle), even though the average illumination
remains constant. (Right) The underlying microcir-
cuit. Each shift of the grating excites some bipolar
cells and inhibits others. The bipolar cells have
biphasic dynamics (see impulse response in inset)
and thus respond transiently. Only the depolarized
bipolar cells communicate to the ganglion cell,
because of rectification in synaptic transmission.
Thus, the ganglion cell fires transiently on every
shift (Hochstein and Shapley, 1976).
(C) Detection of differential motion. (Left) An
object-motion-sensitive ganglion cell remains
silent under global motion of the entire image but
fires when the image patch in its receptive field
moves differently from the background. (Right)
The circuitry behind this computation is based on
similar elements as for the Y cell (panel B). Rectifi-
cation of bipolar cell signals in the receptive field
center creates sensitivity to motion. Polyaxonal
amacrine cells in the periphery are excited by the
same motion-sensitive circuit and send inhibitory
inputs to the center. If motion in the periphery is
synchronous with that in the center, the excitatory
transients will coincide with the inhibitory ones,
and firing is suppressed (Ölveczky et al., 2003;
Baccus et al., 2008).
(D) Detection of approaching motion. (Left) A
certain type of retinal ganglion cell responds
strongly to the visual pattern of an approaching
dark object, as indicated by the schematic spike
train below, but only weakly to lateral object
motion. (Right) The circuit that generates this
approach sensitivity is composed of excitation
from OFF bipolar cells and inhibition from amacrine
cells that are activated by ON bipolar cells, at least
partly via gap junction coupling. Importantly, these
inputs are nonlinearly rectified before integration
by the ganglion cell (Münch et al., 2009).
(E) Rapid encoding of spatial structures with spike
latencies. (Left) Specific retinal ganglion cells en-
code the structure of a new image by their spike
latencies. Cells with receptive fields (circles) in a
dark region fire early, those in a bright region fire
late. Cells whose receptive fields contain both
dark and bright produce intermediate latencies
and thus encode the boundary in their synchronous
firing. (Right)The responses result from a circuit that
combines synaptic inputs from both ON and OFF

bipolar cells whose signals are individually rectified. The timing differences in the responses follow from a delay (Dt) in the ON pathway (Gollisch and Meister, 2008a).
(F) Switching circuit. (Left) A control signal selectively gates one of two potential input signals. (Right) In the retina, such a control signal is driven by certain wide-field
amacrine cells (A1), which are activated during rapid image shifts in the periphery. Their activation leads to a suppression of OFF bipolar signals and, through a puta-
tive local amacrine cell (A2), to disinhibition of ON bipolar signals (Geffen et al., 2007).
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the moving pattern. As a consequence, when different Y cells

experience the same motion trajectory, but with different spatial

patterns at their receptive field locations, they can show the

same activity profile and thereby signal a common origin of their

activation. We will recognize this as an essential aspect in the

retina’s scheme for segregating moving objects.

Object Motion

To detect that an object moves within the observed scene, it is

not sufficient, as one first might think, to measure the motion

signal at the location of the object. The reason is that the visual

system faces incessant motion signals that result from move-

ments of the eye. Even when we try to fix our gaze on a static

scene, minute drift and tremor in eye position provide a persistent

source of image motion, whose trajectory is shared by all loca-

tions on the retina (Martinez-Conde et al., 2004). Object motion

thus manifests itself on the retina in the difference between the

motion trajectory of a local patch and that of the background.

Neurons that detect this differential motion signal have been

found in various parts of the visual system (Hammond and Smith,

1982; Frost and Nakayama, 1983; Born and Tootell, 1992), and

they are particularly well studied in the retina. Here, object-

motion-sensitive (OMS) ganglion cells were discovered that

respond selectively to differential motion (Lettvin et al., 1959;

Ölveczky et al., 2003). These neurons remain silent when the

image moves across the retina rigidly, but fire vigorously when

a local patch on the receptive field center moves with a trajectory

different from the background (Figure 2C).

The circuits that implement the OMS computation have been

probed in some detail (Ölveczky et al., 2003, 2007; Baccus

et al., 2008). In the receptive field center, the OMS cell pools

over rectified bipolar signals (Figure 2C), as discussed for Y cells.

The resulting excitation is antagonized by inhibitory signals from

similar Y-like motion detectors in a broad surrounding region.

This inhibitory motion detector has been identified with a poly-

axonal amacrine cell (Baccus et al., 2008), and it seems to act

primarily via presynaptic inhibition of the bipolar cell terminals.

To detect differential motion, the circuit functions as follows.

The motion in the center alone produces a sequence of excit-

atory inputs from bipolar cells to the ganglion cell. The time

course of these inputs reflects the central motion trajectory.

Analogously, the trajectory of the background motion results in

a sequence of inhibitory signals in the polyaxonal amacrine cells.

When the two trajectories are identical (global motion), the inhi-

bition quenches the excitatory inputs at the bipolar cell terminals,

and the ganglion cell remains silent. When the center motion

differs from the background (differential motion), the excitatory

signals do not coincide with inhibition and therefore reach the

ganglion cell and cause it to spike, leading to an explicit repre-

sentation of the local motion component.

It is interesting to note that the circuit distinguishes between

global and differential motion by selectively suppressing

a specific, yet very common visual signal: the coherent motion

in the center and periphery of the receptive field. The only

relevant stimulus feature for the comparison is the speed of

image motion; by virtue of the Y-type circuitry (Figure 2B),

both the direction of motion and the image pattern are

ignored. This allows all parts of the background region to

produce a coherent inhibitory signal regardless of their local
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pattern. Similarly, it allows the OMS cell to detect movement

of an object regardless of its specific content (Ölveczky

et al., 2003). In recent work, an OMS ganglion cell has been

identified in the mouse retina that projects strongly to the

superior colliculus, where it may direct orienting movements

toward the site of object motion (Y. Zhang and M.M., unpub-

lished data). Thus, these neurons likely serve an alarm role

that triggers further inspection of the moving object with other

visual mechanisms.

Approaching Motion

Objects moving vertically or horizontally in the visual field lead to

translation on the retina. But what about motion in the third

dimension of depth? An approaching object would produce an

image patch that gradually expands on the retina, with no net

displacement. Recently, a ganglion cell type was described

that is indeed selective for this stimulus feature (Münch et al.,

2009). Identification of this cell type in the mouse retina was facil-

itated by genetic labeling with a fluorescent marker. These

ganglion cells showed OFF-type responses. They were driven

strongly by an expanding dark spot, even if it was accompanied

by a global brightening of the scene. Yet they remained silent

during lateral motion of a dark spot.

The circuit that achieves the approach-specific responses is

based on excitatory inputs into the ganglion cell through the

OFF pathway and inhibitory inputs through the ON pathway

(Figure 2D). When a dark object approaches, the ganglion cell

receives strong excitation and no inhibition and therefore

responds vigorously. If the object moves laterally, on the other

hand, excitation from its leading edge is balanced by inhibition

from the trailing edge, and the ganglion cell therefore remains

silent. Inhibition thus serves to suppress responses to the non-

preferred motion signal, similar to the strategy of the OMS cell

circuit. In contrast to the OMS cells, however, it is essential

that the inhibition act postsynaptically rather than presynapti-

cally at bipolar terminals, since signals from different parts of

the object must be combined.

Again, nonlinear processing constitutes an important step in

the circuit model: excitation and inhibition are organized in small

subfields whose signals must be rectified in order to account for

the ganglion cell’s approach sensitivity even during global

brightening. Interestingly, the study conjectures that the direct

inhibitory pathway to the ganglion cell passes from ON cone

bipolar cells through electrical junctions to the inhibitory AII ama-

crine cells. Presumably the speed of the electrical synapse

ensures that this pathway keeps up with the excitatory pathway

that has one less interneuron. Note that the AII amacrine also

serves an entirely different function during scotopic vision,

namely to feed rod signals into the cone bipolar cells (Bloomfield

and Dacheux, 2001). This is an interesting example of a single

cell type that serves quite different roles (see also Manookin

et al., 2008), even signaling in opposite directions, and it will be

interesting to look for further examples of such functional

promiscuity.

Detecting an approaching object is naturally of high behavioral

relevance, and nervous systems have developed various mech-

anisms to deal with this challenge. Indeed, a different type of

approach-sensitive response has been found in the frog retina.

Here, retinal ganglion cells called dimming detectors engage in
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highly synchronized oscillations during global dimming or for

large expanding dark patches (Ishikane et al., 1999). The oscilla-

tions are generated in a retinal circuit presynaptic to the ganglion

cells, presumably through negative feedback involving amacrine

cells, because they can be abolished by pharmacological

blockage of GABAA receptors (Arai et al., 2004). Little else is

known about how the retina generates these responses, but it

was possible to directly link them to a specific visually guided

behavior: the frog’s escape from an approaching dark object.

Frogs whose retinal oscillations are suppressed pharmacologi-

cally no longer perform this escape response (Ishikane et al.,

2005).

Anticipation
There is great survival value in being able to anticipate the future.

Indeed, because of delays in our sensory pathways, the brain

really experiences the past, and even knowing the present

requires a measure of prediction. We will see how the retina

can contribute to this process.

Motion Extrapolation

Detecting a moving object and its motion direction are generally

not sufficient; to catch fleeing prey or to avoid an approaching

predator an animal needs to track the object location precisely.

This becomes a challenge because of the rather large response

delays introduced by the process of phototransduction. Even in

bright daylight conditions, the cone photoreceptor responds

with a time to peak of several tens of milliseconds (Baylor

et al., 1974; Schnapf et al., 1990). Thus, the neural signals in

the photoreceptors already lag behind the actual object motion.

During the phototransduction delay, a well-served tennis ball

flies �2 m, a distance many times larger than the receiving

player’s racket. Clearly, the visual system must somehow

compensate for response delays introduced by the retina. It

has been shown that the retina itself already contributes to this

computation. It undoes the delay by relying on the fact that

objects typically move in a smooth fashion, which allows an

extrapolation of the motion trajectory.

When the image of an object moves on the retina, it creates

a wave of neural activity among the ganglion cells. One should

expect that this wave lags behind the object image because of

the delay in phototransduction. Instead, experiments show that

the activity in the ganglion cell layer moves at the true location

of the object or even along its leading edge (Berry et al., 1999).

Effectively, the retinal network computes the anticipated object

location and thereby cancels the phototransduction delay.

Surprisingly, this complex computation comes about through

the interplay of rather generic features of retinal circuitry. The

main contributors are the spatiotemporal receptive field of the

ganglion cell and a dynamic gain-control mechanism. Because

the receptive fields are extended in space, the object already

activates ganglion cells that lie some distance ahead in its

motion path. The spatial receptive field alone would predict an

equally extended zone of activation behind the object. However,

firing of those ganglion cells is suppressed first by the biphasic

temporal receptive field, and second by a dynamic gain control

mechanism, which itself gets activated by the response to the

object (Shapley and Victor, 1978; Victor, 1987; Baccus and

Meister, 2002). The gain control lets the ganglion cell be sensitive
upon first entry of the object into the receptive field, but then

shuts down the response. It is an essential component for the

anticipatory response to motion stimuli (Berry et al., 1999) and

gives this computation a highly nonlinear flavor.

By this algorithm, the retina performs a crude extrapolation of

the object’s trajectory, such that its current location is repre-

sented in the population activity of the ganglion cells. Clearly,

the correction is only approximate: a perfect extrapolation would

compensate for the photoreceptor delay irrespective of the

speed of the object, whereas the retina’s method has a charac-

teristic spatial and temporal scale and thus functions only over

some range of speeds. Similarly, the gain control depends on

stimulus contrast, and thus extrapolation fails for low-contrast

objects (Berry et al., 1999). Of course, most animals’ visual

performance, including that of expert tennis players, also

degrades at high speeds and low contrasts.

In the salamander retina, the retina’s algorithm works well for

objects with the size and speed of small insects that form the

animal’s preferred prey. In this regime, the moving insect is rep-

resented at the retinal output by a blob of firing ganglion cells,

whose center of mass is precisely aligned with the current loca-

tion of the target (A. Leonardo and M.M., unpublished data).

Thus, downstream circuits can read out the target position by

a simple ‘‘population vector’’ average (Georgopoulos et al.,

1986), in which each ganglion cell’s firing rate is weighted by

the vector representing its receptive field center (see also

Figure 4). Of course this deceptively simple representation is

the result of highly nonlinear operations that extrapolate the

motion trajectory based on delayed data from the photorecep-

tors. The underlying computation reveals itself when the object

makes a sharp turn: the neural image among the ganglion cells

continues straight for a few tens of milliseconds, then turns

and catches up with the new trajectory. When the object

executes not a turn but a complete reversal of its trajectory, an

additional response feature emerges: many ganglion cells near

the reversal point fire a brief synchronized burst of spikes

(Schwartz et al., 2007b). This signal may be read out by down-

stream processing stages to identify an error in the retina’s

prediction. What circuit mechanisms underlie this phenomenon

is still unclear.

Omitted Stimulus Response

A somewhat different form of anticipation can be observed

when the visual system is exposed to a periodic stimulus,

such as a regular series of flashes. The activated visual

neurons typically become entrained into a periodic response.

If the stimulus sequence is interrupted, for example by omitting

just one of the flashes, some neurons generate a pulse of

activity at the time corresponding to the missing stimulus

(Bullock et al., 1990, 1994). This phenomenon, termed the

‘‘omitted stimulus response,’’ is quite widespread and has

been noted in the brains of many species, including humans

(McAnany and Alexander, 2009). Qualitatively it suggests the

build-up of an anticipation for the next stimulus, and the large

response reflects surprise at the missing element in the

sequence. Unlike in the case of moving objects, where the

anticipation involves lateral processing in space, here the infor-

mation about the stimulus sequence must be propagated

forward purely in time.
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Recently, the omitted stimulus response has come under

greater scrutiny in the retina, where superior experimental

access allows a focused search for the underlying neural mech-

anisms (Schwartz et al., 2007a; Schwartz and Berry, 2008). The

response requires the convergence of excitatory signals from

the ON and OFF pathways to the ganglion cells. Remarkably

it does not require any inhibition mediated by amacrine cells

(Schwartz and Berry, 2008; Werner et al., 2008). In one model,

the periodic stimulus is extrapolated in time by a tunable oscil-

lator. The flash sequence sets up a resonance within the retina

that locks onto the stimulus frequency. When the sequence

ends, the internal oscillation continues and causes the large

omitted stimulus response (Schwartz and Berry, 2008). A

competing model suggests that the combination of excitatory

inputs from ON and OFF bipolar cells by itself is sufficient to

explain many aspects of the omitted stimulus response (Werner

et al., 2008). At the cellular level, these two models make quite

different predictions, so one expects this question to be

resolved soon.

Saccadic Vision
In most animals, vision is an intermittent process: short periods

of fixation where the eye is relatively still are interleaved with

sudden and rapid reorienting movements, called ‘‘saccades’’

(Land, 1999). Recent work has illuminated the role of the retina

in these two dramatically different phases.

Saccadic Suppression

During a saccade, the image sweeps across the retina violently

for tens of milliseconds, precluding any useful visual processing.

In humans, visual perception is largely suppressed during this

period (Volkmann, 1986; Burr et al., 1994; Castet and Masson,

2000). The circuits of the retina are at least partly responsible

for this suppression: many types of retinal ganglion cells are

strongly inhibited during sweeps of the visual image (Roska

and Werblin, 2003). This effect is mediated by spiking inhibitory

amacrine cells, which are themselves excited by the global

motion signal. Conceivably, the underlying circuitry resembles

the one identified for OMS ganglion cells (Figure 2C). In fact,

the OMS cells may be distinct simply by an enhanced sensitivity

to the global inhibition, so they are suppressed even by the much

smaller eye movements during a fixation.

Latency Coding

Once the retinal image comes to rest, the visual system must

analyze the new scene within the short period of fixation, a few

tenths of a second in humans. Indeed, visual perception can

be surprisingly fast. Early psychophysical studies showed that

a 100 ms presentation of an image is sufficient to generate an

understanding of the image content (Potter, 1976), and more

recent experiments revealed that distinct brain signals depen-

dent on image content arise already within 100 ms (Thorpe

et al., 1996; Liu et al., 2002). How does the retina provide the rele-

vant information to allow such rapid processing? One possibility

is that some of this information is already transmitted with the

very first spikes of retinal ganglion cells after the appearance

of a new image (Thorpe et al., 2001).

Such a neural code based on first-spike timing has been

identified now for a type of ganglion cell in the salamander retina

(Gollisch and Meister, 2008a). When a new image appears on the
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retina, every cell in the population fires a brief burst of spikes,

nearly regardless of the image content. However, the responses

differ systematically in the timing of the burst. The first spike

occurs earlier if the receptive field turns dark and later if it turns

bright (Figure 2E). A combination of dark and bright regions in

the receptive field produces intermediate spike times. Therefore,

the relative latencies among the very first spikes in this ganglion

cell population already provide a neural representation of the

image. This representation turns out to be contrast-invariant;

changing the overall contrast of the image affects the number

of spikes in the bursts and their absolute timing, but it preserves

the relative latencies of burst onsets.

Pharmacology and modeling studies (Gollisch and Meister,

2008a, 2008b) have helped elucidate the circuitry that leads to

this spike-timing code (Figure 2E). The key feature is that the

ganglion cell receives excitation from multiple ON and OFF

bipolar cells, which have small receptive fields. The signal from

each of these subfields is rectified before integration by the

ganglion cell. This explains why the ganglion cell fires whenever

there is any image change within its receptive field. The latency

code arises because the ON bipolar cells respond with slower

kinetics than OFF bipolars. Thus, a burst caused by brightening

is delayed in time relative to one caused by dimming. As in

previous examples, the rectification of the signal from each small

subunit of the receptive field is a crucial step in this computation.

It allows every location within the ganglion cell’s receptive field to

contribute to the cell’s activation and prevents cancellation of

the contributions from ON and OFF pathways.

A related study focused on retinal processing in the archerfish,

an intriguing animal subject that excels in precise, visually

guided spitting behavior (Segev et al., 2007). Ganglion cell

responses were measured under stimuli that simulated what

the fish observed while aiming at targets, including both

saccades and fixational eye movements. Again, much of the

relevant image information was available already in the burst of

spikes immediately following the saccade, and much of it could

be extracted by measuring the burst latency. It is unclear,

however, how the retina in the archerfish produces these

responses; this will require relating the applied stimuli to the

cells’ receptive field characteristics.

Clearly it will be important to test whether these findings of

latency coding in retinal ganglion cells generalize across

species, and if so, whether it is accomplished by the same mech-

anism of ON/OFF convergence. Virtually all retinas contain

ganglion cells with access to both ON and OFF bipolar signals

in the inner plexiform layer: these include ganglion cell types

with bistratified dendritic trees, those with broad arbors, and

even some sharply monostratified cell types (Dacey et al.,

2005; Dumitrescu et al., 2009). An interesting alternative circuit

would combine excitation from one bipolar pathway with disinhi-

bition via amacrine cells from the other pathway.

Switching Circuits
In the preceding examples, we encountered a retinal circuit that

gates the transmission of local bipolar cell signals based on

motion in the periphery (Figure 2C); another circuit uses the con-

vergence of parallel ON and OFF bipolar pathways (Figure 2E).

Combining these features, one can envision a switching circuit:
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if the gating signal enhances one input pathway and suppresses

the other, this would allow a single ganglion cell to switch

between representing either of the two inputs (Figure 2F).

Surprisingly, such a switching circuit has indeed been observed

in the salamander retina.

In amphibian retinas, the OFF pathway tends to dominate.

Even the ON-OFF ganglion cells that receive input from both

ON and OFF bipolars are strongly biased toward OFF inputs.

However, this imbalance can switch rather suddenly (Geffen

et al., 2007). In particular, the switch can be triggered by a large

peripheral image shift as would happen during a head saccade.

For some hundred milliseconds after the shift, the ganglion cell

transiently switches from transmitting OFF signals to transmit-

ting ON signals. During this brief interval, excitation of the

ganglion cell from the ON bipolar pathway is strengthened,

whereas the OFF bipolar pathway is suppressed.

In searching for the underlying mechanisms, a wide-field ON

amacrine cell emerged as an interesting suspect. These inter-

neurons respond to the peripheral shift with a strong depolariza-

tion. Furthermore, electrical stimulation of such an amacrine cell

caused a substantial shift in the ON-OFF balance of nearby

ganglion cells. This suggests a circuit model for this switch

where the wide-field amacrine cell gates transmission from

OFF bipolar cells to the ganglion cell via presynaptic inhibition

(Figure 2F). In addition, it inhibits a second type of amacrine

cell that itself gates the ON bipolar input. The higher purpose

of this switch for visual processing is still unclear. Perhaps the

global image shift is not even the relevant trigger event; given

that a single amacrine cell produces substantial gating (Geffen

et al., 2007), the switching may be initiated by much more subtle

image features.

From a broader perspective, such a gated switch is a powerful

computational device, as it allows the dynamic routing of infor-

mation through a circuit. It is impossible to imagine electronic

computers without such switches, and they have been postu-

lated to play equally essential roles for brain processing (Ander-

son and Van Essen, 1987; Olshausen et al., 1995). Thus, it is

promising to find at least one neural implementation and similar

mechanisms may act elsewhere in the nervous system.

Adaptive Computation
The visual computations in the retina are not bound to a static set

of rules. Instead, their character changes dynamically along with

the demands of the visual task. Since the retina receives little

efferent input from the brain, these demands cannot be specified

from the higher visual centers. Instead, the modulation of retinal

function is largely determined by the recent history of the stim-

ulus, which itself is a function of the visual environment as well

as the animal’s actions.

Light adaptation is a prominent form of such modulation.

Because the ambient light level varies over �9 orders of magni-

tude in the course of a day, while spiking neurons have a dynamic

range of only�2 log units, the early visual system must adjust its

sensitivity to the prevailing intensities. This adaptation to light

level is accomplished by the retina, beginning already in the

photoreceptors, and the process is complete before spiking

neurons get involved. Over a wide range of intensities, the sensi-

tivity of the retina declines inversely with the average light level.
As a result, the ganglion cell signals are more or less independent

of the illuminating intensity, but encode the reflectances of

objects within the scene, which are the ethologically important

variables. The perceptual effects of light adaptation and its basis

in the circuitry and cellular mechanisms of the retina have been

studied extensively and covered in several excellent reviews

(Shapley and Enroth-Cugell, 1984; Hood, 1998; Fain et al.,

2001; Rieke and Rudd, 2009).

Contrast and Pattern Adaptation

In recent years, there has been considerable interest in other

forms of adaptation. For example, the nature of retinal compu-

tations depends strongly on the contrast of the stimulus,

namely the range between the low and high intensities in the

scene. When the retina is brought from an environment of

low contrast to high contrast, its sensitivity declines and its

kinetics speed up (Shapley and Victor, 1978). One can roughly

distinguish two components. In a rapid initial phase, lasting 0.1

s or less, the sensitivity decreases slightly, accompanied by

a substantial change in kinetics; this has generally been called

‘‘contrast gain control’’ (Victor, 1987; Baccus and Meister,

2002). There follows a slow phase, lasting many seconds,

during which the kinetics remain unaltered, but the sensitivity

continues to decline; this has been called ‘‘contrast adapta-

tion’’ (Smirnakis et al., 1997; Baccus and Meister, 2002; Man-

ookin and Demb, 2006).

An even more intricate form of modulation is ‘‘pattern adapta-

tion.’’ This occurs upon a switch between two environments that

may have the same mean intensity and contrast, but differ in the

frequency of certain spatiotemporal patterns. For example, in an

environment of horizontal bars, the retina’s sensitivity to hori-

zontal patterns declines, while the sensitivity to vertical patterns

increases (Hosoya et al., 2005). Similarly, the response of an

OMS ganglion cell (see above) undergoes a pronounced decline

in sensitivity following the onset of differential motion (Ölveczky

et al., 2007). These changes can be observed in individual retinal

ganglion cells: the spatiotemporal receptive field becomes

modified so as to suppress the dominant patterns in the environ-

ment. All these pattern adaptation effects have been of the slow

kind, but the methods employed may have missed a substantial

fast component.

Circuit Mechanisms Underlying the Gain Changes

To identify the neural mechanisms behind contrast adaptation, it

helps to trace the emergence of gain changes in various neurons

along the retinal pathways. Given the prominent feedback

circuits within the retina, this is fraught with some risk, but it

has yielded insights nonetheless. For example, following a

switch from low to high contrast, the photoreceptor response

undergoes no change in gain, quite unlike what happens in light

adaptation. Neither is there any change in horizontal cells, sug-

gesting that synaptic release from the photoreceptor is similarly

unaffected (Rieke, 2001; Baccus and Meister, 2002; Beaudoin

et al., 2007). In some bipolar cells, one begins to see a change

in response properties, reflected by both accelerated kinetics

and lower sensitivity (Rieke, 2001; Baccus and Meister, 2002).

Similar effects are seen in some but not all amacrine cells (Bac-

cus and Meister, 2002). However, the most pronounced effects

of contrast gain control and adaptation are measured in the

ganglion cells.
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Figure 3. Pattern Adaptation Based on
Synaptic Depression at Bipolar Cell
Terminals
(A) Circuit model for pattern selectivity at bipolar
terminals (top) with corresponding receptive field
layout (bottom). A ganglion cell receives input
from multiple bipolar cells. Here, bipolar cells B1

and B2 have the same receptive field, namely the
center square of the lattice below. Their terminals,
however, receive presynaptic inhibition from two
amacrine cells A1 and A2 at different neighboring
locations. This interaction leads to different trans-
mitter release rates at the two terminals and
makes the terminals preferentially respond to
different visual patterns. The B1 terminal, for
example, receives co-occurring inhibition from
A1 for horizontal stripes and therefore responds
more strongly to vertical stripes, while the B2

terminal responds more strongly to horizontal
stripes.
(B) During stimulation with flickering vertical
stripes, bipolar cell B1 and amacrine cell A1 are
activated out of phase, so there is no presynaptic
suppression of release. The synaptic terminal of
B1 is therefore highly active (bold arrow), and

over time, synaptic depression reduces the strength of this connection (small circle). Cells B2 and A2, on the other hand, are activated in phase. Thus, release
at the terminal of B2 is suppressed (thin arrow), vesicles can be replenished, and the connection recovers its strength (large circle). If one subsequently tests
the ganglion cell’s receptive field using a mixture of vertical and horizontal stripes (Hosoya et al., 2005), the sensitivity to horizontal stripes, mediated by the strong
B2 terminal, will exceed that to vertical stripes.
(C) During stimulation with horizontal stripes, the reverse changes take place. After synaptic depression has taken its course, the ganglion cell becomes more
sensitive to vertical stripes.
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To explain the substantial increase in adaptation from bipolar

to ganglion cells, three mechanisms have been explored:

intrinsic membrane conductances in the ganglion cell, interac-

tion between bipolar and amacrine signals, and adaptation in

synaptic transmission from bipolar cells. The ganglion cell itself

does indeed display some adaptation to the range of its input

(Zaghloul et al., 2005), as confirmed by direct current injection

(Kim and Rieke, 2001), but this makes only a partial contribution

(Manookin and Demb, 2006). Amacrine cell signals are not

required for contrast adaptation, as shown convincingly in

experiments with transmitter blockers (Rieke, 2001; Brown and

Masland, 2001; Beaudoin et al., 2007). On the other hand, trans-

mission from bipolar cells makes a large contribution to the

adaptation. Although transmitter release has not been measured

directly, strong evidence comes from recordings of synaptic

currents in ganglion cells (Manookin and Demb, 2006) and

from experiments that stimulate alternatingly different sets of

bipolars connected to the same ganglion cell (Ölveczky et al.,

2007). All these studies indicate a slow process of contrast adap-

tation in bipolar cell synaptic transmission.

We will briefly expand on the process of bipolar cell transmis-

sion, because it may well hold broader significance. In a simple

view of the events, a high-contrast stimulus drives the bipolar

cell more strongly, the synaptic terminal releases transmitter at

a high rate, which over a few seconds leads to depletion of

synaptic vesicles, and in turn decreases the gain of the synapse.

Thus, the postsynaptic response gradually declines during the

period at high contrast. Following a switch to low contrast, trans-

mitter release drops immediately, the vesicles are gradually

replenished, and the gain of the synapse recovers. Indeed,

continued activation of a bipolar cell terminal does lead to

presynaptic depression from vesicle use (Burrone and Lagnado,

2000), and the results can be seen in postsynaptic amacrine cells
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in the form of paired-pulse depression (Singer and Diamond,

2006; Li et al., 2007). Interestingly, this depression recovers

with a time constant of 5–10 s, similar to the time course of

various contrast adaptation phenomena.

If this picture is correct, then each bipolar cell synaptic

terminal undergoes contrast adaptation independently. This

would be a powerful design. A ganglion cell typically collects

excitation from 10–100 bipolar cell terminals. Each of these

terminals can have different response properties. This is clear

if the terminals belong to different bipolar cells. But even for

terminals from the same bipolar cell, spatial receptive fields

and response kinetics may differ as a result of lateral inhibition

from amacrine cells that synapse directly on the terminal (Dow-

ling and Boycott, 1966). Because of this diversity, any given stim-

ulus pattern drives some of these bipolar cell terminals strongly

and others weakly (Figure 3). The active terminals will adapt

and decline in strength, whereas the silent ones recover. Thus,

the ganglion cell gradually becomes less sensitive to the prevail-

ing stimulus pattern while it retains sensitivity to other patterns. In

this way, the same cellular process of presynaptic depression

may explain contrast adaptation as well as the various versions

of pattern adaptation (Hosoya et al., 2005; Ölveczky et al.,

2007). Note that this hypothesis for pattern adaptation really

follows the traditional explanation invoked for such phenomena

in the cortex: the fatigue of pattern-selective input units (Graham,

1989). Instead of neurons, here these input units are individual

synaptic terminals.

Functional Purpose

What is the role of retinal contrast adaptation for vision? Pro-

longed viewing of high-contrast patterns leads to clear changes

in perception: both a general decline in sensitivity and a specific

decline for the adapting pattern (Blakemore and Campbell, 1969;

Graham, 1989). The effects arise and decay on the timescale of
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several to tens of seconds, as for the slow process in the retina.

Similar adaptation phenomena have long been reported for

neural responses in the visual cortex (Maffei et al., 1973; Mov-

shon and Lennie, 1979). Initially they were attributed to process-

ing within the cortex, but a substantial reappraisal of the

evidence has taken place, and certain forms of contrast adapta-

tion observed in cortex are now thought to be inherited from the

retina (Baccus and Meister, 2004). One strong indicator was that

most of cortical contrast adaptation arises in a purely monocular

pathway (Truchard et al., 2000). Definitive evidence resulted

from direct comparison of retinal and cortical signals in the

same experiment (Solomon et al., 2004).

These developments suggest that contrast adaptation in the

retina has a substantial effect on higher visual areas and even

human perception. But what may be the ethological purpose of

these adaptive dynamics? Here again it is important to distin-

guish the fast process (contrast gain control) from the slow one

(contrast adaptation). As discussed above, human vision is char-

acterized by brief fixations, when the gaze is held still, interrupted

by eye saccades. The fast gain control adjusts within tens of

milliseconds, considerably less than the length of a fixation

(�0.3 s). Therefore, after every saccade of the eye, the retina

will operate with somewhat different gain and kinetics depending

on the local properties of the scene. Furthermore, this gain

control is too fast to accumulate any kind of statistical measure

of contrast in the scene, like the time-averaged standard devia-

tion (Bonin et al., 2006). Slow contrast adaptation, on the other

hand, occurs over many seconds, and thus may adjust retinal

function more properly to the statistics of the environment, aver-

aged over many successive fixations.

Discussion
As we have seen, the retina does not merely convey a prefiltered

pixel image to the brain. Instead, it engages in substantial

computations of specific image features, with different ganglion

cell types taking on different tasks. Many of these computations

can be understood as answers to particular challenges shared

by many animals: the need to detect dim lights, the need to

detect moving objects and locate them correctly, the struggles

with a constantly moving image sensor, and the need to predict

the future and adapt to changing conditions.

The Case for Retinal Computation

This view represents a significant departure from the conven-

tional wisdom and will therefore meet with some skepticism.

Here we discuss some of the concerns by answering questions

from an imaginary critic, in order of increasing difficulty.

1. All these retinal nonlinearities seem to impose a serious

complication for visual coding. How can the brain ever hope to

decode the ganglion cell spikes and reconstruct the image on

the retina? The animal as a whole is interested in survival and

reproduction, not a veridical reconstruction of what was on the

retina. For these goals, its visual system must distill the massive

flood of raw visual information at the photoreceptors to just one

bit (fight or flight) or maybe a few bits per second (air traffic

controller). The retina simply begins this process of data reduc-

tion and sends on just those visual features that are useful for

subsequent operations. This process is lossy, and we know

well that the brain never recovers the original visual image. The
discarding of image information in the retina fundamentally

affects our spatial, temporal, and chromatic acuity and underlies

many popular optical illusions. In this view, the power of retinal

computation should be judged by how much raw information it

filters out for discard, not by the amount it preserves.

2. Many of the examples quoted here are from ‘‘lower’’ verte-

brates, meaning nonprimates. Isn’t it well established that the

smarter animals do much less processing with their retina? This

is a persistent myth that deserves to be laid to rest. The anatom-

ical structure of the primate retina is equally as intricate as that of

other mammals. Several new ganglion cell types have been

discovered recently, now bringing the total to about 17 (Dacey,

2004; Field and Chichilnisky, 2007). Their functions remain

mysterious, because virtually all the physiological experiments

concern just two classes of ganglion cells, the P and M cells.

Although the P cells are by far the most numerous ganglion

cell type, this is a simple consequence of their small receptive

fields and the need to cover the retina. The newly discovered

cell types collectively provide more capacity than the entire cat

retina (Wässle, 2004), and thus can offer many additional chan-

nels of visual information that may not require a fine-grained

representation. Indeed, several of the novel aspects of retinal

function have been confirmed in the primate retina (Chander

and Chichilnisky, 2001; Uzzell and Chichilnisky, 2004; Pillow

et al., 2005; Petrusca et al., 2007) and thus are intimately relevant

for an understanding of human vision. That said, the primate

central fovea is a rather special case. In this small region of the

retina, covering 1� of visual angle, there is little or no conver-

gence from photoreceptors to bipolars or from bipolars to

ganglion cells. Consequently, the circuits of Figures 2 and 3

cannot apply. For a specific understanding of high-acuity human

vision, it will indeed be very helpful to learn more about foveal

ganglion cells and interneurons.

3. The idea that the retina extracts specific visual features is

a blast from the past, to be found in the first anecdotal reports

of ‘‘bug detectors.’’ Did we not banish this fuzzy thinking in the

1960s by performing careful parametric measurements of

center-surround receptive fields? Indeed, some early studies of

retinal function were guided by much more ethological sensitivity

and tried to relate ganglion cell responses to specific tasks (Lett-

vin et al., 1959; Levick, 1967). The next generation overturned

this anecdotal thinking and applied the rigorous new engineering

tools from systems analysis (Rowe and Stone, 1980). Instead of

showing the retina some arbitrary photographs of flies, these

workers sampled the stimulus space systematically, feeding

the retina with sine waves and white noise to measure its transfer

function. Sadly, all the resulting ganglion cell receptive fields

looked like Mexican hats with a biphasic time course, and the

only possible conclusion was that the interesting visual compu-

tations are performed later in the brain (Stone, 1983). Now we

understand that the problem was not with the ganglion cells,

but with the stimuli. For example, the OMS ganglion cells dis-

cussed above have perfectly bland-looking center-surround

receptive fields when studied with white-noise flicker. Of course

the particular condition that reveals their function—differential

motion of an image patch and its background—never occurs

during white-noise flicker, whereas it represents a common

occurrence on the retina in real life.
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Figure 4. Linear Readout of a Neural Computation
A sensory neural network such as the retina responds to a stimulus, here the movement of an object in the visual field, by producing spike patterns in the output
neurons. The network is postulated to solve a computational task, here compensating for the phototransduction delay and extrapolating a motion trajectory to the
current object location. To claim that the network has solved this computation, we stipulate that the computational result should be obtainable as a linear combi-
nation of the output neurons’ activities. In the present case, this readout is provided by binning the spike trains in short observation windows and weighting each
neuron’s spike count, ni(t), by the position vector of its receptive field center, x!i . Summation of these weighted responses over all neurons yields successive
representations of the current object position, x!ðtÞ=

P
i x!i$niðtÞ=

P
i niðtÞ.
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We think it is safe now to return to a more ethological consid-

eration of the retina for several reasons. First, the impoverished

traditional view of the retina’s function clashes with its rich

synaptic structure. By anatomical and molecular criteria, the

mammalian retina has�15 different ganglion cell types, whereas

the parametric functional studies typically reveal around 5, and

even those can have similar-looking receptive fields (Stone,

1983; Carcieri et al., 2003; Segev et al., 2006). The anatomical

diversity suggests that there is much function left to be discov-

ered and that we probably still have a good distance to go before

understanding all the computations performed by the retina.

Second, we have now far greater technical control over both

the light input and the spike output from the retina, allowing

a systematic exploration even of complex stimulus conditions

like fixational image motion. Third, retinal processing is being

studied in at least half a dozen different species, and a compar-

ison among them can distinguish general processing principles

from species-specific quirks. Finally, with improved technical

access to the interneurons of the circuit, we can now build and

test plausible circuit mechanisms to explain the new visual

computations (Figure 2).

In many of the studies reviewed here, the ethological perspec-

tive served to single out specific tasks that were then studied

with specifically designed, artificial stimuli that distilled the

task-relevant features of the visual scene. This reductionist

approach has proven quite successful for a systematic and

quantitative investigation of computational principles. Yet, even-

tually we need to go a step further and understand retinal func-

tion within the rich complexity of natural stimuli. This endeavor

will likely provide additional challenges because multiple pro-

cesses occur simultaneously, for example, when the retina

adapts to the large range of intensities and contrasts in a natural

scene while at the same time facing different combinations of

motion signals. Initial studies of responses to natural stimulus

components have already demonstrated the rich dynamics

that may arise (van Hateren et al., 2002).
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4. What is special about the term ‘‘computation,’’ and why

doesn’t it apply for the task of linear filtering that we used to

assign to the retina? This is a more philosophical question,

but we suggest that a ‘‘computation’’ should yield an explicit

result to a specific question. For example, the question ‘‘is

there a moving object near this location?’’ is answered in a

simple yes/no manner by the firing of an OMS ganglion cell.

No difficult high-order decoding is necessary to extract the

desired result, which is an obvious benefit for speedy down-

stream reactions. The question ‘‘where exactly is the moving

target right now?’’ is answered collectively by a population of

motion-extrapolating ganglion cells (Figure 4). Now in this

example, the coordinates of the target are not provided explic-

itly in the responses of single neurons but distributed across

a population. This requires broadening the concept of

‘‘explicit,’’ and we suggest a criterion that has been used effec-

tively in the past (Marder and Abbott, 1995; Eliasmith and An-

derson, 2002; Shamir and Sompolinsky, 2006): in a distributed

representation, the answer of interest should be obtainable

through linear decoding, namely by a simple weighted summa-

tion over the single-neuron activities (Figure 4). Such a decoding

could be achieved in a single step by a downstream neuron

that samples from the population. By this convention, a retina

that merely filters the image on the photoreceptors performs

no computation at all, since the desired result can be read

via weighted summation directly from the photoreceptors

themselves.

Circuit Models

As one investigates the computations of a new type of ganglion

cell, how should the relationship between stimuli and responses

be formulated? Given the vast range of possible stimulus movies

one might show the retina, it is impossible to simply deduce

the computation from an input-output table of stimuli and

responses. One needs to develop some quantitative hypotheses

for that relationship and test them in a directed manner. What is

a useful format for these hypotheses?
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One traditional approach has been to write the response as

a Wiener expansion of the stimulus (Sakai and Naka, 1992).

This is a highly principled method, with a solid mathematical

basis which guarantees that every stimulus-response relation-

ship can be expressed that way. It is particularly effective if

the system responds approximately linearly. Unfortunately, the

reality is that retinal responses are highly nonlinear under most

conditions of practical interest. Estimating all the required

Wiener kernels from experiments becomes unrealistic, and this

approach has largely fallen out of fashion.

We have had good experiences with a very different formalism

based on schematic circuit models (Figure 2). The stimulus is

processed by a network of individually simple elements. These

components and their interactions are fashioned after retinal

neuron types, without simulating the actual biophysics in detail.

Each element performs either linear filtering or an instantaneous

nonlinear transformation. The list of elements includes: ON

and OFF ‘‘bipolar cells,’’ modeled as linear spatiotemporal filters;

synaptic transmission, modeled as an instantaneous nonline-

arity; pooling over many synaptic inputs, modeled as weighted

summation; inhibition, modeled as instantaneous combination

of two opposing signals. Others can be added as needed.

This style of modeling offers several benefits. First, it is

intrinsically realistic. Any stimulus-response function written

this way can be implemented by neural machinery, specifically

the interneurons of the retina. Second, the formalism is none-

theless sufficiently broad. Theorems guarantee that one can

write an arbitrary spatial transform of the input image this

way (Funahashi, 1989; Hornik et al., 1989), though it would

be interesting to extend this to spatiotemporal functions.

Third, despite their simple graphical nature, these models

are nonetheless rigorous. Any such circuit graphic can be

translated into a mathematical relationship between input

and output of the retina, with parameters that are embodied

in the circuit elements. The circuit functions are easily simu-

lated and make quantitative predictions that match actual

ganglion cell firing remarkably well (Ölveczky et al., 2003; Bac-

cus et al., 2008; Gollisch and Meister, 2008a). Finally, such

a formula for the stimulus-response relationship is at the

same time an explicit hypothesis for how the computation is

done. It makes predictions about what happens at various

stages inside the retina, and these can be tested indepen-

dently. For example, the spatiotemporal receptive field of

a bipolar cell can be measured directly, and that immediately

reduces the free parameters of the model (Baccus et al.,

2008). In this way, the circuit model for a ganglion cell

response serves as the linking hypothesis between a systems

level computation and the cellular level of components.

The Future: Labeled Neuron Types

Reverse-engineering the connectivity and function in a neural

network made of 50 different component types is a daunting

challenge. The task would be more plausible if each of the

neuron types had a part number stamped on it, much as one

finds for components in a radio. Actually, methods to tag specific

cell types are now within reach. There has been great interest in

the genetic mechanisms by which neuronal cell types are spec-

ified during development. As a benefit of this research, a number

of cell-specific markers have been identified, and there already
exist multiple lines of mice in which specific retinal cell types

are labeled fluorescently (Trimarchi et al., 2007; Kim et al.,

2008; Siegert et al., 2009; Wässle et al., 2009; Münch et al.,

2009). Such type-specific labels are a great boon in studies of

circuit function for several practical reasons.

First, a fluorescent marker allows one to focus physiological

experiments on that specific type, since electrodes are easily

aimed at the fluorescent cells. In this way, even a rare cell type

can be studied in a dedicated fashion (Huberman et al., 2008;

Kim et al., 2008), and one may hope to systematically address

the question whether specific cell types participate in multiple

computations. Second, the marking method can immediately

reveal the shape of the cell, and thus its likely connectivity within

the retina and to projection areas in the brain in the case of

ganglion cells. Third, the genetic tag can also be recruited to

modify the cell type, so it may be activated or inactivated at

will (Lagali et al., 2008). Finally, a genetic marker enables more

effective scientific communication. Different laboratories can

work on the same cell type simply by using the same mouse

line. Previously, the communication of cell types was often

hampered by ambiguities in the morphological type definitions,

or simply because detailed morphology was not available in

physiological studies. One can envision a future in which every

retinal cell type comes with a genetic handle, by which it can

be visually marked or its function manipulated. Such a state of

affairs would greatly enhance our ability to dissect neuronal

circuitry, in the retina as elsewhere in the brain.
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