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Humans can resolve the fine details of visual stimuli although the
image projected on the retina is constantly drifting relative to the
photoreceptor array. Here we demonstrate that the brain must take
this drift into account when performing high acuity visual tasks.
Further, we propose a decoding strategy for interpreting the spikes
emitted by the retina, which takes into account the ambiguity caused
by retinal noise and the unknown trajectory of the projected image
on the retina. A main difficulty, addressed in our proposal, is the
exponentially large number of possible stimuli, which renders the
ideal Bayesian solution to the problem computationally intractable.
In contrast, the strategy that we propose suggests a realistic
implementation in the visual cortex. The implementation involves
two populations of cells, one that tracks the position of the image
and another that represents a stabilized estimate of the image itself.
Spikes from the retina are dynamically routed to the two populations
and are interpreted in a probabilistic manner. We consider the
architecture of neural circuitry that could implement this strategy
and its performance under measured statistics of human fixational
eye motion. A salient prediction is that in high acuity tasks, fixed
features within the visual scene are beneficial because they provide
information about the drifting position of the image. Therefore,
complete elimination of peripheral features in the visual scene
should degrade performance on high acuity tasks involving very
small stimuli.
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Our brain infers the structure of its surroundings from the
signals of sensory neurons. When those signals are noisy, their
interpretation becomes ambiguous, and multiple hypotheses about
the outside world compete. Here we consider how the brain esti-
mates a 2D image of the visual scene on the basis of the neural
signals from optic nerve fibers. Ambiguity in this process derives
from two primary sources: noise in the neural circuitry of the retina
and random movements of the eye that lead to image jitter on the
retina. An ideal Bayesian decoder in the brain would take these
sources of ambiguity into account and evaluate the likelihoods of
different 2D scenes leading to the spike trains from the retina.
However, the full probability distribution of an image with many
pixels includes an unfathomably large number of variables. Prior
work on Bayesian inference focused on simplified problems in
which the subject estimates only a single, typically static sensory
variable (1-5). Thus there is considerable uncertainty whether
Bayesian inference of full images is practicable at all. We begin by
laying out the stochastic constraints on this process.

Humans with normal vision can resolve visual features spanning
less than an arcminute, or approximately two receptive fields of
ganglion cells in the central fovea, where each ganglion cell receives
input from a single cone photoreceptor. Indeed, the letters “E” and
“F” on the 20/20 line of a Snellen eye chart differ by just a few
photoreceptors (Fig. 14). While we perform this discrimination, the
letter drifts across the retina over distances much larger than its own
size. In the time between two subsequent spikes of any ganglion cell,
the image shifts across several receptive fields (Fig. 14), so that the
cell is driven by a different part of the visual scene by the time the
second spike is emitted. To properly decode the image from these
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spikes, it would seem that downstream visual areas require knowl-
edge of the image trajectory. The image jitter on the retina during
fixation is a combined effect of body, head, and eye movements (6,
7). Whereas the brain can often estimate the sensory effects of self-
generated movement using proprioceptive or efference copy sig-
nals, such information is not available for the net eye movement at
the required accuracy (8-10) (reviewed in ref. 11). Thus the image
trajectory must be inferred from the incoming retinal spikes, along
with the image itself. In so doing, an ideal decoder based on the
Bayesian framework would keep track of the joint probability for
each possible trajectory and image, updating this probability dis-
tribution in response to the incoming spikes (5, 11). However, the
images encountered during natural vision are drawn from a huge
ensemble. For example, there are 2°® possible black-and-white
images with 30 x 30 pixels, which covers only a portion of the fovea.
Clearly the brain cannot represent a distinct likelihood for each of
these scenes, calling into question the practicality of a Bayesian
estimator in the visual system.

Here we propose a solution to this problem, based on a factor-
ized approximation of the probability distribution. This approxi-
mation introduces a dramatic simplification, and yet the emerging
decoding scheme is useful for coping with the fixational image
drift. We present a neural network that executes this dynamic al-
gorithm and could realistically be implemented in the visual cortex.
It is based on reciprocal connections between two populations of
neurons, of which one encodes the content of the image and the
other the retinal trajectory.

Results

To address how the visual system may deal with random drift we
need, first, a model of how retinal ganglion cells (RGCs) respond
to light falling on the retina, a model of the visual stimulus, and
a model for how the stimulus is shifted relative to the photore-
ceptor array. Each one of these ingredients is probabilistic. To-
gether, they define the likelihood of every possible stimulus given
the spikes generated by the retina.

We model the fovea as a homogeneous array of retinal ganglion
cells of a single type, arranged on a rectangular grid (Fig. 14). The
images consist of black-and-white pixels on this same grid, whose
intensities are drawn independently from a binary distribution. The
firing of each cell is an inhomogeneous Poisson process whose rate
depends on the image pixel in the receptive field. We begin with
a simple model where the cell responds instantaneously, firing at
a rate A if the pixel is on and at a background rate A, if it is off.
Later, we consider a more realistic version where the rate depends
on the past light intensity within the retina’s integration time. The
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Fig. 1. (A) The letters E and F on the 20/20 line of the Snellen eye chart test,
projected on an image of the foveal cone mosaic (photoreceptor image
modified from ref. 39). The 1-arcmin features that distinguish the letters
extend over only a few cones. Also shown is a sample fixational eye move-
ment trajectory for a standing subject (courtesy of ref. 12), sampled every
2 ms for a duration of 500 ms and then smoothed with a 4-ms boxcar filter.
Red dots mark the spike times from a neuron firing at 100 Hz. (B) Diagram of
model for spike generation; see text for details. (C) Spikes generated by our
model retina, presented with a letter E spanning 5 arcmin for 40 ms (with
instantaneous RGC response), (Left) with no image drift and (Right) with
image drift following statistics of human fixational eye motion. (D) Archi-
tecture of a neural implementation of the factorized decoder. (Upper) Each
RGC projects to multiple what and where cells. (Lower) The projections are
reciprocally gated between the two populations.

fixational movements of the image over the retina are modeled as
a discrete random walk (12).

Spike Accumulation and the Magnitude of Fixational Motion. It is
instructive to consider first what an ideal decoder would do if the
image trajectory was known. An incoming spike from RGC i could
then be associated uniquely with the pixel i — x(¢), where x(¢) is the
known position of the image at the discharge time of the cell. After
this routing of spikes to pixels, the performance would be the same
as for a static image. Due to the noisy nature of ganglion cell firing,
the decoder must accumulate spikes over a minimal time interval.
For example, using firing rates of Ag = 10 Hz and A; = 100 Hz, the
letters on the “20/20” line of the Snellen eye chart can be estimated
to reasonable accuracy within 40 ms (Fig. 1C, Left).

Without some knowledge of the image trajectory, such a re-
construction is impossible. Human eye movements resemble
a random walk with a diffusion coefficient D ~ 100 arcmin®/s
(11-13). In the 40-ms interval considered above, the resulting
image drift can cover some 200 different pixels. Indeed, images of
a Snellen letter derived from simple spike accumulation in each
pixel seem almost random (Fig. 1C, Right). Thus one is led to
a decoding scheme that estimates the image trajectory and uses it
to reconstruct the content of the image.

Factorized Bayesian Decoder. The ideal decoder of such spike trains
would use Bayes’ rule to continuously update a probabilistic esti-
mate of the image s and the retinal position x, on the basis of all of
the spikes observed up to time ¢. Because the number of possible
images s is prohibitively large, we explored an approximate strategy
that maintains the Bayesian inference scheme, but with a dramat-
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ically simplified representation of the probabilities. Specifically,
the full Bayesian estimate is approximated by a factorized posterior
distribution

p(s,x,t) :p(xvt) HPi(Sht)v [1]

where p(x, t) is a probability distribution of positions and p,(s;, ¢)
are probability distributions for individual pixels in the stabilized
coordinates of the image. This form ignores any correlations be-
tween the values of different pixels or between the image and its
position. To update the posterior after a short time interval, At,
while maintaining its factorized structure, we perform two steps.
First, the factorized posterior p(s, x, t) is updated according to the
incoming spikes between ¢ and ¢ + At, on the basis of Bayes’ rule.
Subsequently, the result is recast into the factorized form. This
recasting leads to update rules that are derived in the ST Appendix
and are summarized below. We define m;(f) to be the estimated
probability thats; = 1: m;(t) = pi(1,¢) = 1 — pi(0, ¢).

Update between spikes. Between spikes the dynamics of p(x, t) are
described by a diffusion equation,

9
% = DV?p (x.1), [2]

which reflects the increasing uncertainty about position due to
the random walk statistics of image drift. The dynamics of m,(¢)
are described by the differential equation

om; (I)
ot

= - A)\[l —m; (t) ]m,-(t), [3]

where AL = A — Ay Thus, my(t) decays toward zero in the
absence of spikes, with a rate proportional to AX. We note also
that if m; is either O or 1, such that the decoder is certain about
the value of pixel i, m; remains unchanged.

Update due to a spike. If ganglion cell k fires a spike at time ¢, then
p(x, t) changes as

D, t) oc[ho + ANmg_y (£2)] - p(x,22), 4]

where ¢, designates the time right after the update, 7_ represents
the time right before the update, and a multiplicative prefactor
keeps the probability distribution normalized. The quantity in
the brackets is the estimated firing rate of ganglion cell k if the
image is at position x. Thus, p(x, ¢_) is multiplied by the estimated
likelihood that ganglion cell k has produced a spike. The update
to the estimate of pixel i, following a spike in cell £, is

mi () =my (t-) + ¢ fmy (t-)]-p(k—i,2), [5]

where m;(z_) is the value immediately before the spike, m;(z) is
the updated value following the spike, and ¢(mm) is the nonlinear
function ¢(m) = Ahm(l — m)/(hg + Alm). Therefore, the
change in m; is proportional to the estimated probability that
the image is at position k — i.

Network Implementation. In contrast to the ideal Bayesian de-
coder, we can envision a neural implementation of the factorized
decoder because the number of probabilities that must be tracked
grows only linearly with the number of pixels. The update rules
(Eqgs. 2-5) are particularly suggestive of an implementation that
involves two populations of neurons: One represents the proba-
bility of image position p(x) and the other the probability of pixel
intensities m;. We refer to these two populations as where and
what neurons.

Within such an implementation, the update rules (Eqs. 4 and
5) indicate how spiking of each RGC affects the activities of
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multiple where and what cells (Fig. 1D, Upper). The effect of
ganglion cell k on what cell i is gated in a multiplicative fashion
by the activity of where cell x = k — i. In turn, the update to where
cell x in response to a spike from ganglion cell k is gated by the
activity of what cell i = k — x. This result suggests a network
architecture with two divergent projections from retinal ganglion
cells to the what cells and the where cells, along with reciprocal
recurrent connections between both of these populations (Fig.
1D, Lower). The diffusion dynamics and normalization of p(x, ¢)
can be implemented by horizontal excitatory connection and
divisive global inhibition within the where population.

For concreteness, we describe the factorized decoder in terms
of the above neural implementation, although other imple-
mentations are possible.

Performance of the Factorized Decoder. The response of the fac-
torized decoder to a sample stimulus is illustrated in Fig. 2A4.
Activity in the where population successfully tracks the position of
the image. The estimate of the image itself, represented by activity
in the what population, gradually improves with time. In this ex-
ample almost all of the pixels are estimated correctly at 300 ms,
the duration of a typical human fixation. The what population
effectively encodes the stabilized image, from which the effects of
eye motion have been removed.

Fixational image movements must be taken into account. When tested
with many random images, the factorized decoder routinely
reconstructed 90% of the pixels correctly in just 100 ms (Fig. 2B).
By comparison, a static decoder that ignores eye movements and
simply accumulates spikes performed very poorly: Shortly after
stimulus onset it reached a maximum of nearly 60% correctly
estimated pixels, but then the blurring from retinal motion took its

A Stimulus

Where population

@

x [arcmin]

Tracking

toll. Clearly, the tracking of image movement is essential for
successful reconstruction.

Performance improves with slower eye movements, higher firing rates,
and larger image size. When D is small, the decoder easily tracks the
position of the image, and performance is limited only by the
stochasticity of the ganglion cell response. As D increases, the
performance degrades due to uncertainty about the position (Fig.
3A4). The convergence time increases sharply above a critical value
of D. This value is proportional to the RGC firing rates, as can be
deduced from dimensional analysis. With a larger image, more
information is available about the trajectory, and the decoder’s
performance improves markedly (Fig. 3B). Further analysis shows
that increasing the number of pixels by a factor f acts roughly like a
reduction of D by a factor \/f (SI Appendix, Section II). This
sensitivity to image size should be observable in psychophysical
experiments.

Performance under conditions of human vision. With D set to 100
arcmin?/s, corresponding to the measured statistics of human
fixational drift (11-13), the factorized decoder performs well on
images that cover at least 40 x 40 pixels (20 x 20 arcmin) (Fig. 3B).
Reconstruction improves dramatically if one is satisfied with
a lower resolution. For example, if the pixel size is increased from
0.5 to 1 arcmin, then the eye drift changes the pixel contents less
rapidly, and four ganglion cells are available to report each pixel.
Under these conditions, small 5 X 5 arcmin images can be deco-
ded rapidly to high accuracy (Fig. 3B).

Dynamics of the Retinal Response. So far we assumed that RGCs
modulate their firing rate instantaneously in response to the
stimulus. More realistically, RGCs integrate light in their re-
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Fig. 2. (A) Example of image reconstruction by the factorized decoder.
(Upper) From left to right: the stimulus; snapshot of activity in the where cell
population at t = 10 ms; and tracking of horizontal and vertical image po-
sition over time, with probability (grayscale) compared with actual trajectory
(red). Parameters: 30 x 30 pixels, 0.5 arcmin/pixel, 291 = 10/100 Hz, D = 100
arcmin?/s. (Lower) Several snapshots of activity in the what cell population.
(B) Fraction of correctly estimated pixels as a function of time, averaged over
100 randomly selected images each containing 50 x 50 pixels and spanning
25 x 25 arcmin. Spikes generated with image motion are presented to the
factorized and static decoders (solid traces). Performance of static decoder is
shown also for a static image (dashed trace).
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Fig. 3. (A) Performance as a function of D, averaged over 1,000 pre-
sentations of random images. The convergence time (at which 90% of pixels
are estimated correctly) increases with D (Left) and the accuracy (fraction of
correctly estimated pixels at t = 300 ms) decreases with D (Right). Results are
shown for images containing 40 x 40 pixels (20 x 20 arcmin). Increasing the
firing rate improves performance (Ao,1 = 10/100 Hz, solid traces; Ao,; = 20/200
Hz, dashed traces). (B) Performance improves with image size. Solid traces
show performance for several image sizes, indicated in the Inset in units of
arcminutes. Dashed trace shows reconstruction of 5 x 5 arcmin images
consisting of 1 x 1 arcmin pixels. In all other traces resolution is 0.5 x 0.5
arcmin. Vertical dashed lines designate the value of D that corresponds to
measured statistics of human fixational eye motion (11-13).
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ceptive field over a time window of ~100 ms with a biphasic im-
pulse response (Fig. 44, Inset) (14). Thus, a spike from a given
RGC conveys partial information about all of the pixels that passed
through the cell’s receptive field within the integration time.
Therefore eye movements affect the quality of image inference
even in a hypothetical scenario where the decoder knows the image
trajectory. Indeed, in this scenario, ~250 ms are required to ac-
curately identify pixels in a drifting image at a resolution of 0.5
arcmin (Fig. 44) whereas, with a small D, the required time is only
50 ms (Fig. 44). These estimates for a known trajectory serve as an
upper bound for any decoder that infers the image in the more
realistic case of unknown trajectory (SI Appendix).

Because spike generation depends not only on the current image
position but also on its history, a fully Bayesian decoder would
need to track a probability distribution for every possible trajectory
in the past ~100 ms. Given how many such trajectories exist, this
approach seems unrealistic. Instead we explored performance of
the above factorized decoder that ignores the dynamics of the
retinal response. When presented with spike trains produced by
the dynamic response model, this decoder fails to stabilize an
image spanning 40 X 40 arcmin with a pixel resolution of 0.5 arcmin
(Fig. 4B). However, if the resolution is lowered to 1 arcmin, this
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Fig. 4. Performance for spike trains generated with a temporal filter in RGC
response. (A) Convergence time when the trajectory is known to the de-
coder. In contrast to the case of instantaneous response, performance
depends on the diffusion statistics. Traces show the convergence time (for
90% accuracy), as a function of D for a factorized decoder that takes into
account the filter (SI Appendix, Section ). Parameters: 20 x 20 pixel images,
0.5 arcmin/pixel (dashed trace) and 1 arcmin/pixel (solid trace). For known
trajectory, image size has little effect (S/ Appendix). Vertical dashed line: D =
100 arcmin®/s. (Inset) The temporal filter (x). (B) Performance of the naive
factorized decoder when spikes are generated with a temporal filter (un-
known trajectory). Traces show fraction of correctly estimated pixels as
a function of time, averaged over 1,000 presentations of random images of
sizes 40 x 40 arcmin, with D = 100 arcmin?/s. Solid and dashed traces: 1 x 1
arcmin and 0.5 x 0.5 arcmin pixels, respectively. The nonmonotonic de-
pendence at short times is related to the structure of the temporal filter and
can be eliminated using a modified version of the update rules (S/ Appendix,
Section I, and Fig. S3). (Inset) Accuracy at t = 300 ms measured for several
image sizes, with 1 x 1 arcmin pixels (average over 1,000 presentations). (C)
Performance on a discrimination task between 26 patterns representing the
letters A-Z, averaged over 400 trials (see main text for all other parameters).
Factorized decoder, black trace; static decoder, red trace; piecewise static
decoder (Discussion and SI Appendix), gray trace. (D) Architecture of a neural
implementation of the factorized decoder for binocular vision (Discussion).
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naive decoder performs quite well, estimating correctly 90% of the
pixels in ~200 ms. Thus, the factorized decoder can successfully
infer pixels at 1 arcmin resolution, over the typical time interval
between saccades. As in the simpler case where RGC response is
instantaneous, reducing the size of the stimulus to 5 X 5 arcmin
leads to significant degradation in performance, which should be
observable in psychophysical experiments (Fig. 4B, Inset).

Discrimination Task. It is useful also to assess the performance of
the factorized decoder on a task for which there are clear per-
formance measures from human psychophysics. We thus consid-
ered a discrimination task similar to the 20/20 row of the Snellen
eye chart (Fig. 4C). The 26 possible images represent the letters
A-Z; each letter subtends 5 arcmin and occupies 10 x 10 pixels on
a 30 x 30 background of off pixels. Spikes are generated by
a model retina with a biphasic temporal filter and diffusion co-
efficient D = 100 arcmin?/s and fed into the decoder. We evalu-
ated the posterior probability for each letter and performed
a maximum-likelihood decision. The decoder achieves a 90%
success rate after ~300 ms, about the length of a human fixation,
and is thus compatible with human vision on this task. To test
whether trajectory tracking is required on this task, we also con-
sidered the simple static decoder that ignores eye movements
altogether. The static decoder reaches peak performance ~40 ms
after stimulus onset, when it correctly identifies the letter in ~50%
of the trials, far short of human performance on this task.

Discussion

We proposed a computation by which the brain might interpret
the spikes obtained from the fovea of the retina, while taking into
account the statistics of image drift and the noisy nature of retinal
responses. First, our analysis confirmed the intuition that the vi-
sual system must indeed take fixational movements into account
to achieve high acuity vision. Simply integrating the retinal spikes
with downstream neurons, while ignoring the eye movements,
results in poor performance inconsistent with human abilities
(Figs. 2B and 4C). Our proposed strategy therefore simulta-
neously estimates the image and its trajectory on the retina (Fig.
2). The method relies on Bayesian inference and thus needs to
grapple with the “curse of dimensionality” from the combinato-
rially large ensemble of random images. To circumvent this
challenge, the factorized decoder keeps track of separate proba-
bility distributions for each pixel in the image and for the image
position. We hypothesize that this strategy is implemented in the
brain by a neural network architecture that involves two cell
populations, one that tracks the position of the image and another
that accumulates evidence about the image content in a stabilized
representation devoid of any image drifts (Fig. 1D).

Dependence on Image Size. The performance of the decoder is
sensitive to the size of the presented image, because it rests largely
on the estimate of the image trajectory. In our model this estimate
was based only on spikes from the foveal region of the retina, which
also encode the image itself. However, the ocular drift trajectory is
common to all parts of the visual field. Thus the brain might use
signals from more peripheral areas for estimating the trajectory,
their sheer number possibly outweighing the sharp decrease in
spatial resolution compared with the fovea. Additionally, di-
rection-selective ganglion cells specialized to encode fine image
motion might be recruited for the task. We therefore suggest that
careful control of peripheral cues may be instructive in psycho-
physical measurements of visual acuity. For small stimuli a few
arcminutes in size, embedded in a featureless background, we
expect to see a significant degradation of fine spatial vision, com-
pared with conditions where a larger area is stimulated or fixed
features are added in the peripheral visual field (Figs. 3B and 4B).
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Alternative Approaches. The detailed architecture and non-
linearity of the circuit model, Fig. 1D, shares notable similarities
with the previously proposed shifter circuits for invariant object
recognition (15, 16): Information from the retina is dynamically
routed to form a stabilized representation of the image, based on
multiplicative control signals representing the eye’s position.
Here we show that for retinal image stabilization, the control
signal can be derived from the retinal inputs, as was previously
suggested in the context of visual attention and invariant object
recognition (17) (see also ref. 18), and we propose a specific
algorithm to achieve this. Furthermore, our approach treats in
a probabilistic framework the signal-to-noise levels of retinal
responses and the statistics of rapid eye movements. Hence the
nature of the computations and their neuronal implementation
are more complex than the deterministic shifter circuit model.

By stabilizing the retinal image, as proposed here, fixational
image motion is dealt with once and for all by dedicated neural
circuitry that performs the same computation regardless of the
image content. Subsequent stages of the visual system can then
probe the content of this stabilized image to perform any number
of visual tasks without needing to deal with image jitter. This di-
vision of labor is functionally attractive, but one can imagine an
alternative scenario in which the visual system deals with fixa-
tional motion separately whenever it analyzes the foveal image for
a specific visual task. We tested this scenario for the letter dis-
crimination task (Fig. 4C) and found that, in principle, such an
approach may be successful: Whereas the spikes from a single
30-ms time window were not sufficient to discriminate between
letters, a procedure that accumulates evidence from many sub-
sequent windows performed quite well (Fig. 4C). This strategy,
which we call the piecewise static decoder (SI Appendix), involves
two steps: First, in each short time window, generate a position-
invariant likelihood that each of the possible letters is in the im-
age, using the static decoder. Second, summate these log-like-
lihoods across windows to accumulate evidence over time, while
ignoring the continuity of the trajectory across adjoining windows.

The piecewise static decoder does not involve an intermediate
stage where the image is represented in stabilized coordinates.
Compared with the factorized decoder, the piecewise static de-
coder seems complicated, because intricate neural circuitry must
be set up for each possible pattern and every kind of visual task.
Additionally, position-invariant pattern recognition apparently
takes place late in the visual cortex, long after inputs from the two
eyes have converged. Therefore, it would be difficult to eliminate
the relative jitter of the two eyes, compared with a solution based
on neural circuitry at an early stage of the visual process.

When the temporal response properties of RGCs are taken into
account, eye motion has two competing effects within our model.
On one hand, it introduces ambiguity in the interpretation of ret-
inal spikes. On the other hand, it helps drive the RGCs, whose
response to completely static stimuli is weak. Previous analysis of
ideal discrimination between two small stimuli at the limit of visual
acuity suggested that a small drift would be beneficial, but the
actual eye movements of human subjects are much larger and on
balance deleterious (11). This was confirmed in the present anal-
ysis for larger images at the resolution limit (Fig. 44). For other
visual tasks involving coarser features, the smearing effect of eye
movements will be less severe, and the beneficial effect, coming
from more robust activation of the RGCs, will be more prominent.
Indeed, recent eye-tracking experiments demonstrated that fixa-
tional drift can be beneficial under those conditions (19).

The global image shifts introduced by eye movements are such
a prominent aspect of the retinal input that one imagines multiple
strategies may have evolved to deal with them. Indeed, certain types
of retinal ganglion cells appear designed to ignore global image
motion entirely and respond only when an object moves relative to
the background scene (20). Clearly these RGCs cannot contribute
to a reconstruction of static scenes. Their version of image pro-
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cessing—implemented already within retinal circuits—can be seen
as complementary to the image stabilization discussed here.

We considered here only the smooth fixational drifts between
saccades or microsaccades (6). A broader question is how the
brain forms a stable scene representation across saccades (21).
The computational principles presented here may be useful also
for treatment of these larger motions. However, the size and
speed of saccades are much larger than those of fixational drift,
and it seems unlikely that the brain deals with both extremes of
eye motion using the same neural circuitry.

Implementation in the Brain. We considered image pixels as the
fundamental units that are reconstructed by the factorized de-
coder. More realistically, if the computation is performed in the
visual cortex (see below), the decoder may represent probabilities
for presence of more complex features, such as oriented edges.
Our neural implementation of the factorized decoding strategy
has several salient features. First, the computation requires a di-
vergence of afferents from ganglion cells to the populations of
what and where units (Fig. 1D). The required span of divergence to
the what population is determined by the typical range of fixa-
tional drifts, ~10 min of arc in each direction, whereas the number
of what cells should correspond at least to the size of the fovea.
The where cells need represent only the possible range of drift,
and because this range is smaller than the size of the fovea, we
expect far fewer where cells than what cells. Thus, every ganglion
cell in the foveal region is expected to synapse into a subset of the
what cells and into all where cells. Second, the dynamic routing of
information from the retina to the what and where populations
requires a multiplicative gating controlled in a reciprocal fashion
by the signals in those populations (Fig. 1D). Multiplicative gain is
prevalent in sensory cortical areas (22, 23), and many mechanisms
for achieving it have been proposed (24-27). Third, in the where
population, local excitatory connections (28) are required to im-
plement the diffusive update between spikes, and a global divisive
mechanism (24, 25, 29, 30) is needed to maintain normalization of
the total activity. Finally, the rate dynamics in both populations
involve local nonlinearities as described by Egs. 4 and 5.
Neural activity. What are the distinctive predictive features of ac-
tivity in the what and where populations? The what cells represent
a stabilized version of the image. Their receptive fields should
shift on the retina according to the eye movements, but remain
locked in the external visual space. Further, ramping firing rates
after the onset of fixation should reflect the gradual accumulation
of evidence about the image content. The where cells are expected
to have large receptive fields, comparable at least to the size to the
fovea. During conditions conducive to image tracking their ac-
tivity should reflect the eye movement.
Location. Where might one find these circuits in the visual system?
Fixational eye drifts are largely independent in the two eyes (31),
so their compensation must occur within the monocular part of
the visual pathway, including the lateral geniculate nucleus
(LGN) and parts of V1. The LGN does not provide the required
convergence of afferents from the retina, over an area ~20
arcmin in diameter. Thus the recipient circuits in V1 are the first
stage at which fixational eye movements could be compensated.
It was suggested previously that primary visual cortex generates
a stabilized representation of the visual image (32), but more re-
cent work (33, 34) concluded that receptive fields of V1 neurons
are fixed in retinal coordinates. In the present context, it is relevant
that these recordings were from V1 cells in the parafoveal region
with relatively large receptive fields 20—40 arcmin in diameter. For
these neurons the receptive field diameter exceeds the total drift
during a fixation, which obviates a strong need for stabilization. By
the same token, these receptive fields, if they are indeed fixed on
the retina, are too coarse to support visual acuity corresponding to
20/20 vision or the equivalent in macaques (35). Thus, the available
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evidence does not exclude a network for fixational image stabili-
zation within the foveal region of V1.

If, in fact, each of the two monocular pathways decodes the image
independently, one needs to ask how their image estimates are
combined. The simplest solution would be for both monocular
decoders to feed the same image estimate. In the context of our
factorized representation, this solution involves two monocular
populations of where neurons that control the inputs to a single
population of what neurons (Fig. 4D). Such a binocular represen-
tation of the stabilized image may appear in disparity-selective
neurons in V1 or downstream of V1, for example in a binocular
population in V2 that receives monocular inputs. To test these
predictions it would be very instructive to record from cortical neu-
rons that represent the primate fovea, whose receptive field structure
is fine enough to resolve patterns close to the animal’s acuity.

Methods

Stimulus and Simulated Spike Trains. We assume that the size a of each pixel
matches the receptive field of a single RGC, and because there is little
overlap between receptive fields in the fovea (36), each ganglion cell reports
on the value of a single pixel (for 0.5 arcmin reconstruction; for 1 arcmin
reconstruction, we assume that each pixels covers four receptive fields). For
each presentation of the stimulus, we first generate a random walk trajec-
tory for the image. Image shifts occur randomly with a rate 4D/a® and
Poisson statistics. Jump size is a and the direction is selected randomly with
equal probabilities for up, down, left, and right shifts. We then evaluate the
time-dependent firing rate of each RGC, determined either from the in-
stantaneous pixel intensity at position or by the recent history as
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where x(t) is the position of the image at time t. The temporal kernel f(z) is
biphasic and is chosen as described (11) (see also ref. 14 and S/ Appendix).
We chose a background firing rate Ao = 20 Hz on the basis of measurements
in macaque retina (37) and chose A\ such that the maximal possible firing
rate of the neuron is 200 Hz. Firing rates are then almost always within the
range 0-100 Hz (S/ Appendix, Fig. S3A), chosen to match maximal firing rates
observed in macaque retina (14, 38). The linear rectification function ¢;(x) =
min(x, A¢c), where we chose the cutoff Ac = 1 Hz. On the basis of the rates A(t),
we generate a spike train for each RGC using inhomogeneous Poisson sta-
tistics. To simplify the numerical simulation, we use periodic boundary
conditions and discretize time in steps dt = 0.1 ms.

Factorized Decoder. In Eq. 2 the Laplacian operator stands for a discrete
operator, Y cynpP(X',t) —4p(x,t), where NN(x) are the four nearest-
neighbor locations near x. To speed up the numerical calculation we used
a version of the update rules as described in SI Appendix, Section I.E, with
a time step dt = 0.1 ms. In all simulations where the naive factorized decoder
is applied to spikes generated with a temporal filter, the decoder assumes
Ao = 20 Hz and X4 = 100 Hz. Measurements of accuracy were performed as
described in S/ Appendix, Section V.
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I. THE FACTORIZED BAYESIAN DECODER

In this section we consider the case where RGC response is instantaneous. We first define the
problem mathematically (part A). We then derive the ideal Bayesian decoder (part B) and the
factorized Bayesian decoder (part C). The implementation of the factorized decoder to the case of
binary pixels yields equations (2)—(5) of the main text (part D, Egs. (S21)—(S23) and (S25)). In
simulations we used a version of the decoder in which time is discretized, as described in part E.
Finally, we present a comparison between the factorized decoder and the ideal decoder for small

1-dimensional images (part F).

A. The problem

We assume a 2D image of n x n pixels with fixed intensities {s;}. The image shifts with time
with a trajectory x (t). For simplicity, we assume that changes in z(¢) occur only at discrete times,
separated by fixed intervals of duration At. Eventually we will take the limit of At — 0. The

trajectory is drawn by a Markov process with a transition matrix 7"
Plz(t+At) | zt)] = Suran.ew + Tzt +At) |z (t)] At (S1)
where
ZT(&: |2') =0 (52)

and the summation is over all N possible values of x. The derivations below are valid for any

choice of the transition matrix. To describe two-dimensional diffusion we choose

D |, jz—2=1
T(x|a')=¢ —4D , z=4a (S3)
0 , =2 >1

We define the initial shift to be 2 (0) = 0. There is a set of n x n neurons, each observing a single

pixel. The response 7; (t) of neuron 7 is an inhomogeneous Poisson process, whose instantaneous



rate depends on the incident image pixel s;_, )
P [Ti (t) | Si—m] = 5”(15)’0 [1 - A (Si—:v(t)) At] + 5”(1«/)71)\ (Si—x(t)) At (84)

where we assumed that At is sufficiently small that in each interval the neuron emits at most one
spike. The function A describes the relation between instantaneous firing rate and incident pixel
intensity. We assume that given the stimulus, the neurons are uncorrelated. In the following, we
denote the vectors of pixel intensities and neural responses by omitting the index ¢, i.e. by s and
r (t), respectively. The problem is to infer, at any time ¢, the fixed vector of pixel intensities s,
given the past spike trains r(0),...,r (¢t). Specifically, we are interested in the continuous time

limit, i.e. At — 0.

B. The Bayesian filter

The optimal Bayesian estimation requires a computation of the posterior distribution
Pls,z(t) | r(0),....,m(t)], which we denote more shortly by P (s,z;t). This distribution can be
marginalized over z (t) to obtain the the posterior of s. P (s,x;t) can be computed iteratively by

N N

Ps,at) = % T1P0 (1) 52 Y. P (o] a) P (s,a'st — At) (S5)

i=1 a'=1
where Z is a normalization constant. We substitute Eqs. (S4) and (S1) in Eq. (S5), and take

At — 0. At times when there are no spikes P (s, x;t) evolves smoothly according to

OP (s,x;t) al al / /
= Rtot(t)—Z/\(Si) P(s,a:;t)—l—ZT(:M:n)P(s,a:;t) (S6)
i=1 z'=1
where Ry (t) is the total expected firing rate,
N
Riot (t) = Y P (s,7;t) Y A(si) (S7)
S,T =1

When there is a spike at neuron ¢ at time ¢;, P (s, z;t) evolves discontinuously according to

P(s,aitiy) = A(Si—a) P (s, @5ti-) (S8)

R; (ti—)

where R; (t) is the firing rate expected at neuron i

Ri(t) =Y A(si—a) P (s,7;1) (S9)



C. The factorized approximation

In the factorized approximation we approximate the posterior as a product of probabilities for

position and for each pixel,
P (s,x;t) 2 P (x;t HP (si5t (S10)

To update P(x;t) and P;(s;;t) we first use Eq. (85). We then recast the updated p(s,z;t) into
the factorized form by marginalizing it on = and s; to obtain the updated P(z;t) and P;(s;;t),
respectively. This procedure minimizes the Kullback-Leibler divergence between p(s,z;t) and the
updated factorized approximation. We insert Eq. (S10) into Eq. (S6), and obtain the dynamics of

the factorized posterior when there are no spikes

8P“ ZTx\x 2t (S11)
LD (1) — A (5] P o1 512

where p; (t) is the firing rate expected by the neuron which at time ¢ observes s;
Z A(si) Py (si,t (S13)

Similarly, we insert Eq. (S10) into Eq. (S8) to obtain the discontinuous change in the factorized

posterior when neuron ¢ spikes

P (a;; ti+) = ﬁpl_x (ti_) P (a;; ti_) (814)
where
Ri(t) = pi—s (t) P (1) (S15)
and

Pk (Sk, ti+) = Pk (Sk, ti_) (816)
1 )
X R0 A(sg)P(x=1i—k;t;i—)+ Z Pi—z (ti) P (x;5t;—)
rH#i—k
which can be rewritten as

— o ()P (=i — ksti
R; (t;i—)

Py (sg,tiy) = {1 + [)\ (5%) ) } Py (sg,ti—) (S17)
or, using Eq. (S14), as

Py (sptis) = {1 + (A (sk) — P (tp)i(zgi =i—kitit) } Py (s, ti) (S18)




D. The binary s; case

When s; are binary variables, we can describe P; (s;,t) by
mi (£) = Py (s; = 1,1) (S19)
In this case, we can write the firing rate function \ (s;) as
A(8;) = Ao+ Als; (S20)
where A\g is the firing rate for s; = 0, A1 is the firing rate for s; = 1, and AX = Ay — Ag. The

evolution of P (z,t) in the absence of spikes is unchanged from Eq. (S11)

N
OP (z;t)

This is equation (2) in the main text, where the operator DV? in discrete space represents the

transition probabilities T'(z|z’) of Eq. (S3). The evolution of m; (¢) in the absence of spikes is

derived from Eq. (S12) and yields Eq. (3),

8mi (t)
ot

= —AX[1 —m; (t)] m; (t) (522)
When neuron ¢ fires a spike, P (z,t) is updated by [see Eq. (S14)]

P(xitiy) =

Rt A (Mg (ti2)) P (25t;) (S23)

where
Ri(t) = Ao+ AN my o P(x;t) (S24)

[Eq. (4)] and from Eq. (S18) we find that my (t) is updated by

ANP ((L’ =1 — k; ti—i—) [1 — Mg (ti_)]
A (ma(ti-))
This can be written in the form of Eq. (5) by defining the nonlinear transfer function ¢(m) =

Adm(1 —m)/( Ao + Alm).

() = {1+ b 1) (525)

E. Large At

In the above derivation we took the limit At — 0. This limit is relevant for biological imple-

mentation, and it simplifies the equations. However, for the purpose of computer implementation



it requires taking a very small time step, such that at any given time step the probability that any
neuron fires a spike is small. This constraint becomes more restrictive as the number of neurons
in the model increase. To allow faster computer implementation, here we derive the algorithm
without assuming a small time step. When \;At <« 1 the implementation of this algorithm should
be identical to the original algorithm up to small truncation and roundoff errors.

Our starting point is the equation of the full Bayesian filter (Eq. S5) which applies for non-
vanishing At. Next, we apply the mean field approximation (see section on mean field approxima-

tion above) and derive the update rules:
P (x; —P’ (z;t HZP Tita (t) | 8i] P (si;t — At) (526)
where
t) = Z P(z|a") P (st — At) (S27)

and

Plriys (t) | si] P(sist — At)

P (z 2
Plast Z Z Plriga (t) | si] P (sj;t — At) (528)
Inserting (S4) into (S26) we obtain the following update rule for P (z;t)
1 pi (t — At) At
P N = — i 2
(w5t) = 7P (i) exp [Z” BTt — Al AL (529)

where p; (t) is defined in (S13). Similarly, by inserting (S4) into (S28) we obtain the update rule
for P (si;t)

P (s;;t) = P(s;;t— At) (S30)

8 ZP(:U;t) Tita (t)%_‘_(l_’f'i+m (1)) _1_.>\(ji)At
‘ pi(t = At) 1—pi (t— At) At

Keeping terms up to first order in At yields

P(siit) = P(siit— At) x {1 — (i) — pilt — AB) AL

from which the continuous time limit of Eqgs. (S12) and (S18) follows by taking the limit At — 0.
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FIG. S1: Comparison of the factorized decoder (full traces) with the ideal Bayesian decoder (dashed traces)
for small, one-dimensional images containing 10 pixels. Accuracy (fraction of correctly estimated pixels),
averaged over 1000 presentations of random images, is shown as a function of time for two values of the

diffusion coefficient (legend).

F. Comparison with the ideal filter

For small one-dimensional images, we can compare the performance of the factorized decoder
with that of the ideal Bayesian decoder. Such a comparison is shown for images containing 10
pixels in Fig. S1. As expected, the factorized decoder infers the pixels more slowly than the ideal
decoder. Further, the plots demonstrate that after a long presentation of the image, the factorized
decoder may converge on an imperfect estimate of the image. In contrast, the ideal decoder infers

all the pixels correctly if given enough time.

II. PERFORMANCE AS A FUNCTION OF IMAGE SIZE

A. Accuracy of tracking for a known image

We assume that the image is known and evaluate how well the decoder estimates the position
of the image at steady state. The pixels are assumed to be uncorrelated with an equal distribution
of on and off values. This part of the calculation applies to the optimal Bayesian decoder as well
as to the factorized one, since both of them have the same dynamics when the image is known.

Specifically, we consider the following quantity
log P(Ax) = (log p(x(t) + AX)) ). (S31)

where x(t) is the true position of the drifting image at time t. The averaging is performed over all

possible trajectories x(t) and over the ganglion cell firing patterns.



For convenience we work with a one-dimensional image containing n pixels and assume that
image drift occurs in discrete steps: At each At the image moves one step to the left, with prob-
ability DAt, or to the right, with the same probability. Ultimately we will be interested in the
limit of small At — 0. At this stage we only require that At is sufficiently small such that any

individual neuron is unlikely to produce two spikes in a single time interval,
MAtKT |, MALK L. (S32)

In addition we assume that DAt < 1.
The update of p(x,t) is:

plz, ¢+ At) = %p(?‘ | 2){(1 = 2DAOp(x,t) + DALz + 1,1) + ple — 1,0]}  (S33)

To estimate the steady state behavior of p (z,t) we make use of the following approximations.
First, we approximate logp(r | ) by replacing it with its average over r. In the limit of large n

this quantity is the same for all values of x except for the true position of the image:

(logp(r | z)) =4 ® =) (S34)
co — ndi, At x # x(t)

where dgr,At is the Kullback-Leibler distance per pixel between the distribution of firing patterns

given the correct image, and the distribution of firing patterns given a shifted version of the image,

1 A
dxr, = = (A1 — Ao)log =t (S35)
4 Ao

and where ¢q is independent of z. In deriving this expression we made use of the assumption that

the pixels are drawn independently from a binary distribution. We thus replace the dynamics of

Eq. (S33) by:

logp(x,t + At) = —log Z + NdKLwa,x(t)

+ log {(1 - 2DAt)p(z, t) + DAt [p(x + 1,1) + p(z — 1,8)]} (S36)

where Z is determined from the normalization requirement on p. Here the spiking is no longer
considered as a stochastic process: The combined influence of all spikes on the Bayesian estimate
is encapsulated deterministically in the second term on right hand side of Eq. (S36). In the limit
At — 0,

o) = ndxud e — 2(t)] p(e) + D [p(x + 1) + plx — 1) — 2p(a)]

dt
— ndgrp(z*)p(zx) (S37)



As a further simplification we consider a particular trajectory, where the image remains at z(¢) = 0
at all times. In other words, the image is static, but the estimator is tuned to a randomly drifting

image with statistics characterized by the diffusion coefficient D. At steady state we then have,
Dp(xz +1) +p(z — 1) = 2p(z)] + ndkLp(0) [62,0 — p(z)] = 0 (S38)

This equation describes the steady state distribution of particles which are created by a point
source at £ = 0 and undergo one-dimensional random diffusion. The particles are created at a rate
ndg Lp(0) and are randomly removed, independent of their position, at the same rate such that
their total number remains constant in time. The parameter p(0) must be obtained self consistently

from the requirement that

o0

> pla)=1. (S39)

—o0
By dividing this equation by D we see that the solution depends only on the ratio ndky,/D.
Therefore doubling the diffusion coefficient has the same effect as reducing the number of pixels
by a factor of two. For two-dimensional images, however, n is replaced everywhere by n?. Hence
performance depends on the diffusion coefficient, scaled by the number of pixels. This is the main
result of this section. We proceed to analyze the form of the solution to Eq. (S38) in the 1-d case.

The solution to Eq. (S38) is found by assuming the ansatz
P(z) x exp(—alzx]|). (540)

Inserting this expression in Eq (S38), we get

d
2[cosh(a) — 1] = n%g)(()) (S41)
From the normalization requirement (S39), p(0) = tgh(«a/2). Therefore
. (ndkL
— ginh~! ( ZEKL 42
a = sin < 5D > (542)

Fig. S2 A shows a measurement of log P(Ax) (Eq. S31) from a long simulation of the factorized
decoder tracking a known one-dimensional image containing 1000 pixels. These results compare

well with the approximate analytical expression [Egs. (S40),(S42)].

B. Accuracy of tracking for an unknown image

Here we consider the opposite limit where the image is completely unknown to the decoder.

This is the situation when the image is first presented to the decoder. We consider an approximate
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FIG. S2: A For large images the probability of position inferred by the decoder is sharply distributed
around the true position. Symbols and solid trace show log P(Az) [Eq (S31)] as a function of Az, for a
one-dimensional image containing 1000 pixels. These results are compared with the analytical estimate,
Egs. (540) and (S42) (dashed trace). Parameters: \g1 = 10/100Hz, D = 200 pixels?/s. B Accuracy of
decoded pixels after a long presentation (1s) becomes roughly independent of the number of pixels n? when
plotted as a function of D/n. Data is shown for n = 10 (black), 20 (blue), 40 (red), and 80 (green), which
corresponds to 5 x 5, 10 x 10, 20 x 20, and 40 x 40 arcmin. All parameters are as in Fig. 3B.

decoder which assumes that the image moves only at discrete times, separated by regular intervals

of duration At. We choose

1

At=—
4D

(943)

because over this time scale it is reasonable to assume that the image is static. In order to track
the position of the image accurately, the decoder must be able to infer the relative position of the
image in the second interval, compared to its position during the first interval, which we denote
by Ax*. The inference is based on the RGC spike counts observed during the first and second
intervals, which we denote by r and r’. In order for the decoder to successfully distinguish between

a shift Az and the true shift Az*, the following quantity must be large compared to unity for any
Az # Ax™:

dkr, [p(r, | Ax) || p(r,7 | Aa:*)] (S44)

This is the Kullback-Leibler divergence between the probability distribution of spike counts given
Ax and their distribution given Ax*. Assuming that pixels are statistically independent, and using

the instantaneous response property of the neurons, we obtain:

0 , Ax = Azx*

dy, [p(r, 7" | Az) || p(r,r’ | Az*)] =n?{
dgr, , Az # Az”

(S45)
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where

dxy = > Y [Z p(s)p(r1 | $)p(ra | 5) = Y pls1)p(s2)p(r1 | s1)p(ra | s2)

x log [Z p(s")p(r1 | s )p(ry | S')] (S46)

In this expression p(s) is the prior probability for pixels intensities which, in the following, we

assume is uniform, and the spike statistics are Poisson:

e M)A\ (5) A"

p(ri|s) = o (S47)
For binary images we can write JKL as
A 1
dkr, = Z [Jo,() + J1,1 — 2J()71] (848)
where
o~ p(r1|0)p(ra | 0) +p(r1 | Dp(ra | 1)
Joreo = D Y p(r1 | s1)p(re | s2)log 5 (S49)

r1=07r2=0
The decoder estimates whether the image has moved by correlating the spike trains in the two time
intervals. In the limit of small At these firing patterns are sparse, and we expect the information

coming from the correlations to scale as At2. A precise expansion in powers of At yields
dxr, = a(Xo, A1) AL + .. (S50)

where

1 [2@3 + %)
4

(X, A1) = ~log m] (A1 — o) (S51)

This expression is valid if A\g 1At < 1. The decoder can track the image accurately if n%ZKL > 1.
We thus obtain the requirement that

na'lt/?
4

D < (S52)

This result suggests that the value of D, beyond which performance starts to degrade, should scale
as n, the square root of the number of pixels, rather than by n? as suggested by the tracking of a
known image (Sec. ITA). Indeed, when the accuracy of pixels inferred by the factorized decoder is

plotted as a function of D/n, the traces are seen to be roughly independent of D/n, Fig. S2 B.
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III. TEMPORAL RESPONSE OF RETINAL GANGLION CELLS

We consider the situation where a temporal filter is involved in the response of RGCs. As before,
we assume that each RGC fires as an inhomogeneous Poisson process but instead of Eq. (S4) we

have
Plrit)|s,X]=0—r)[1—X(s,X)At]+r;\ (s, X) At (S53)
where the rate \;(s, X) is given by

Ai(s, X) = Ao + A / A7 f(T)8i—a(t—r)- (S54)

Here f(7) is the temporal filter and we adopt the notation that X with a capital letter denotes a

full trajectory, and x(t) denotes the image position at a particular time ¢.

A. Ideal Bayesian Filter

We denote by P(s, X;t) the posterior probability of the image s and the trajectory X given all
the spikes emitted from time 0 up to time ¢. Between spikes,
OP X t)
(s, <Z Ai(s, X) ) P(S,x;t)+ Y T (X |X')P(s, Y1) (S55)
X/

where
Ry =) ) (s, X)P(s, X'; ). (S56)
X' s

is the expected firing rate of neuron ¢. When neuron i spikes at time ¢t = t;,

Ai(s, X)P(s, X;t;)
A

P(s, X;tf) = (S57)

where Z is a normalization factor, chosen such that the sum

YN P x5t =1 (S58)
s X/

B. Factorized approximation

We can apply the factorized approximation while keeping track of probabilities for full trajec-

tories instead of only the current position:

P(s, X;t) HP sist)P(X;t). (S59)
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The update rules for p;(s;;t) and P(X;t) are obtained from Eqgs (S55), (S57) by marginalizing over
s; and over the trajectory.

We begin with the updates between spikes. Evaluating the update rule for P(X;t) involves
averaging of the total firing rate over s given X. While this in general is complicated, it is simple

in the linear case,

> P(sit) Z Ai(s, X) = Xo + AN / dr f(7) Z > Psit)si_yi—r) (S60)

where we used the notation:
P(sit) =[] Pilsit) (S61)

The last term reduces to

Z Z P(S; t)si—m(t—T) = Z My —g(t—7) (t) (862)
where m;(t) is the mean of s; with respect to P(s;t). This quantity is independent of X, and this
leads to

D P(sit) Y Xils, X) =X+ AN Y my (S63)

S

where

£ = / dr f(7). (S64)

Hence only the diffusion term survives,

OP(X,1)

o = 2 T(X | Y)P(YV.t). (565)

Y

To compute the dynamics of P;(s;;t), we denote by S the vector of all the sj except s;, and write,

/ drf() S PSSO Y 5amy = f1 | Sy + 51— ms (S66)
St J J

Hence,

Z?Pi(s,-; t)

g = OMlsi —ma)Filsist) (S67)

We next consider the update following a spike in RGC i. Here we need to compute:

S Plsit)hi(s.X) =+ A [ dr f(rmi gy (568)



Hence,

Ao+ AN [ATf(T)Ma—m

P(X,t") =

()

P(X,t7)
where
Ri = Ao+ A) / drf(r) S miupr (2:t))
Here p,(z;t) equals the probability with respect to P(X;t) that xz(t — 7) = :
pr(;t) = P(X;)0x(t-r)
X
For the probability of si, we write

ZP(Xa t) Z P(Skvt)si—:c(t—r) = pT(i - k;t)(sk - mk) + R;
X Sk

so that,

AD W - -
P(i— kst ) (sg —my) | pr(sk:t; )

()

Pk(sk;tj) = |:1 +

where

P(xz;t) = /de(T)pT(x;t)
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(S69)

(S70)

(S71)

(S72)

(S73)

(S74)

We note that the update rules for Py (sg;t) do not require knowledge of the full distribution over

trajectories P(X,t): Only the marginals p,(z;t) are required. Furthermore, the update rules for

the pixels have precisely the same form as in the case without temporal filtering, if P(x;t) is

replaced by P(x;t). (In the case without temporal filtering we assumed that the firing rate A(s;)
can be written as A(s;) = Ao+ A\s;). This is seen by comparing Eqs. (S67), (S70), and (S73) with

Eqgs. (S12), (S15), and (S17), respectively.

Known trajectory

If the trajectory is known, the dynamics between spikes are given by Egs. (S67) and (S73),

where in Eq.(S73) P(z,t) is replaced by:

P(l‘,t) = /dT f(T)(SX(t—T)7SC‘

(S75)
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Rectification

So far we assumed that A\ is sufficiently large that \;(¢) remain positive at all times. In more

realistic models of RGC responses, the firing rate involves rectification:

Ai(s, X) = ¢ |:/\0 + A)‘/de( )Si— x(t— T):| : (S76)
Here we assume linear rectification:
A , A A
(N = (S77)
Ae 5, A< A

where A, is a (typically very small) cutoff firing rate. The precise treatment of rectification within
the factorized approach leads to complicated update rules. Instead, we use an approximation,
which reduces to the precise update rules derived earlier when there is no rectification.

To explain the approximation we consider the update rule between spikes. To derive the update

rule for p(sk;t) we need to calculate the following quantity,
A =pr(se) [T | D opilsi) | D ¢ [)\o + A)\/dT f(T)Si—:E(t—T):| (S78)

J#k Sj

The derivative of pg(sg;t) between spikes can then be written in terms of Ay as

d
&pk(«% t) = —Ap + 2]: Ajpr(skit) (579)

The sum over ¢ is the total firing rate from the whole population of RGCs. Due to the nonlinearity

it is difficult to calculate precisely the sum over s;. Our approximation is to replace, for each i,

the argument inside ¢ by an estimate based on the expected firing rate,

¢ [/\0 + AA/dT f(T)si—:E(t—T):| ~ 0; X [Ao + AA/dT f(T)Si—w(t—T):| (S80)

where

@i =0 |:)\() + A)\/dT f(T)mi—x(t—'r) - )\c:| (881)

and © is the Heaviside function. In other words, the decoder estimates for each RGC whether its
output is rectified, based on its current estimate of the pixels. After making this approximation,

it is straightforward to evaluate Ay and in the binary case we get

Omy(t)
ot

= —AXmng(t) [1 — my(t ZP 23t)Ou (S82)
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where we use the notation my(t) = Px(sp = 1;¢). A similar procedure yields an approximation

rule for the update following a spike in RGC 1,

q1

my(t4) = = e ) a0+ qlmk(t_)mk(t_) (S83)

where
g1 = min {Rk FANP(i — k) [1 — my(t_)] ,)\c} , (S84)
go = min {Rk — ANP(i — B)ymy(t_), Ac} (S85)

and where Ry, is given by Eq. (S70).

Comparison with the ideal decoder

In the case of a known trajectory [Eq. (S75)] and for a very small image (4 x 4 pixels) we can
compare performance of this decoder with the ideal Bayesian decoder, Fig. S3B. The factorized
decoder in this case matches almost precisely the ideal Bayesian decoder, and therefore provides
an estimated upper bound for performance in the case of an unknown trajectory. Further, we
expect performance for a known trajectory to depend only weakly on image size. This expectation

is confirmed by comparing Fig. 3S B (red trace) with Fig. 3 A (dashed trace).

C. Unknown trajectory - factorized decoder with trajectory filtering

In the full problem where the decoder jointly estimates the trajectory and the filter, we consid-
ered an approximate scheme, which we call the factorized decoder with trajectory filtering. The
decoder estimates the position of the image using the naive rules of Egs. (S11) and (S14). Even
though the naive decoder ignores the temporal filter, it tracks the position of the image, with a
small delay dt ~ 15ms that matches the peak time of f(7), Fig. S3 C. The decoder then generates

an estimate of P(z,t) as follows,
Plat) = / dr (1) P(w:t — 7) (S86)

This estimate is used to update the pixel estimates m;(t) using Egs. (S67) and (S73) using
Egs. (S82) and (S83). The network architecture that could implement this decoding strategy
is shown schematically in Fig S3 D. Because the estimate of p(m; t) is delayed by dt, we introduce a

compensating delay in the spikes when updating P;(s;;t). Therefore the process of spike estimation



17

starts only after a delay dt. In order to improve the trajectory estimate during the initial d¢ period,
we update P;(s;) during this period using the naive rules, Egs. (S12) and (S17). After the initial
dt period, pixel estimation starts anew using Eqs. (S82) and (S83).

The factorized decoder with trajectory filtering performs significantly better than the naive

factorized decoder that ignores temporal filtering altogether, as demonstrated in Fig. S3E.

IV. PIECEWISE STATIC DECODER

The piecewise static decoder (Fig. 4C, gray trace) is defined as follows. Time is split into
intervals of duration 7. The spikes emitted in each one of these time intervals are analyzed
separately to generate a likelihood estimate for each of the patterns s® (the 26 letters). This

estimate is given by

Palt) = =S o [ri(®) | 2] (887)
Z(t) ;

where s is the intensity of pixel 7 in pattern «, and the sum is over all possible translations of the
pattern. The decoder assumes that within a time interval the position of the image is static, and
all possible locations (represented in the sum by x) are equally likely. The spike count statistics
are Poisson,

exp[=A(s) T][A(s)T]"

r!

plrlsl= (S88)

Finally, the decoder treats positions in different time intervals as if they are independent. Hence

the likelihood for each pattern is given by:
log P, = Z log pq(t). (S89)
t

In a discrimination task, only the relative magnitude of P, for different « is important. Therefore

it is sufficient for the decoder to evaluate the following quantities

L, = Zlog {Zexp
t T

—aq + Z ri(t)logA (sfjrx)] } (590)
where
ae =Y AT (S91)

which represent the log likelihood up to an additive constant which is independent of «, and to

choose the pattern « for which L, is maximal.
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V. ONLINE METHODS

Initialization

At time t = 0 all estimates in the what population are set to m;(0) = 0.5, i.e. to implement a
prior that on and off occur with equal probabilities. We arbitrarily label the position of the image

at time 0 as x(0) = 0. Therefore we set p(z = 0,¢t = 0) = 1. For all other z, p(z,t = 0) = 0.

Accuracy measurements

The representation in what cells is stabilized in time, but in different trials with the same
image it may converge at different spatial shifts. To accommodate for these shifts when measuring
accuracy, we first find the shift x,,, such that p (s | {mi4s,, }) is maximized, where s is the true image
and p (s|{m}) = [, [simi + (1 — s;)(1 —m,;)]. To measure accuracy we compare the maximum-

likelihood pattern (obtained by rectifying m;) with the image s at the shift x,.

Resolution of reconstruction

For reconstruction of images composed of pixels subtending 0.5 arcmins, a diffusion coefficient
D = 100 arcmin? /s corresponds to 400 pixels? /s. To estimate performance on reconstruction of
pixels spanning 1 arcmin, we modified our simulations in two ways: First, because four RGCs are
available to report on the value of each pixel, we increased firing rates by a factor of 4. Second, we

decreased the diffusion coefficient, in units of pixels?/s, by the same factor.

Temporal filter

In all numerical simulations with a temporal filter, we used a biphasic kernel of the form [15,19]

" "y
f(t) = Tn+1e o pme T2 (892)
1 2

where 71 = 5ms, 79 = 15ms, n = 3, and p = 0.8.
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FIG. S3: A Distribution of firing rates [Eq. (6) in Methods] measured over a long presentation of an image
containing 10 x 10 pixels and averaged over all RGCs. The diffusion coefficient D = 100 arcmin?/s. In all
panels in this figure, Ay = 20 and A\ is set such that the maximum possible firing rate is 200 Hz. B For a
known trajectory and spikes generated with a temporal filter we compare performance of the ideal Bayesian
filter (dashed traces) and the factorized decoder of Eqgs. (S82)—(S85) with known trajectory, Eq. (S75), which
takes into account the structure of the temporal filter (solid traces). The full Bayesian decoder can only be
implemented for very small images, hence the image contains only 4 x 4 pixels. Results are shown for two
values of the diffusion coefficient (legend). The resolution is 0.5 arcmin. C Tracking of the image position by
the naive factorized decoder which assumes that RGC response is instantaneous, when presented with spikes
generated from RGCs with a non-instantaneous response. Left: The true position (blue trace), and tracking
by the where cells: grayscale intensities represent the inferred position, marginalized over the vertical axis.
Right: correlation function of the true position and the mean estimated position. Tracking lags behind
the true position by about 16.5ms (vertical dashed line). This lag corresponds approximately to the sharp
peak in the temporal filter (Fig. 4A, inset). D Schematic architecture of a neural network that implements
the factorized decoder with trajectory filtering (Supporting Text). E Performance of the factorized decoder
with trajectory filtering (red trace), compared to the naive factorized decoder (black trace, as in Fig. 4C).

Parameters: 30 x 30 arcmin image, 1 arcmin resolution, D = 100 arcmin? /s.



