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SUMMARY

Olfactory processing in the insect antennal lobe is
a highly dynamic process, yet it has been studied
primarily with static step stimuli. To approximate
the rapid odor fluctuations encountered in nature,
we presented flickering ‘‘white-noise’’ odor stimuli
to the antenna of the locust and recorded spike trains
from antennal lobe projection neurons (PNs). The
responses varied greatly across PNs and across
odors for the same PN. Surprisingly, this diversity
across the population was highly constrained, and
most responses were captured by a quantitative
model with just 3 parameters. Individual PNs were
found to communicate odor information at rates up
to �4 bits/s. A small group of PNs was sufficient to
provide an accurate representation of the dynamic
odor time course, whose quality was maximal for
fluctuations of frequency �0.8 Hz. We develop
a simple model for the encoding of dynamic odor
stimuli that accounts for many prior observations
on the population response.

INTRODUCTION

Odors in the natural environment are transported by turbulent

flow of air or water. In these chaotic eddies, odor filaments

from multiple sources may be densely interleaved. An animal

navigating through such an odor plume encounters rapid varia-

tions in odor content, exacerbated by its own intermittent move-

ments (Koehl et al., 2001; Murlis et al., 1992; Carde, 1996) and

breathing rhythms. These rapid fluctuations may pose some

challenges to identifying an odor; on the other hand, the variation

itself may provide important cues about the odor source (Hop-

field, 1991; Murlis et al., 1992). One suspects that the neural

circuits that process olfactory signals are adapted to this ecolog-

ical reality. However, much of what we know about olfactory

processing stems from studies using steady exposure to single

odors (with a few exceptions: Stopfer and Laurent, 1999; Brown

et al., 2005; Vickers et al., 2001). Here, we probe the function of

the early olfactory system in locusts, with a particular focus on

very dynamic odor stimuli, whose time course approximates

that in turbulent plumes.

In the insect brain, the antennal lobe performs the first level of

olfactory processing and encoding. Three populations of neurons
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interact in this circuit: olfactory receptor neurons (RNs) provide

the sensory input signals, projection neurons (PNs) transform

and transmit RN output to subsequent brain areas, and local

neurons (LNs) mediate mostly inhibitory interactions through

a densely connected local network. Broadly speaking, RNs

excite PNs and LNs; PNs excite LNs but not other PNs (R.A. Jort-

ner and G.L., unpublished data); LNs inhibit PNs, other LNs post-

synaptically (Hansson and Anton, 2000) and possibly RNs

presynaptically (Wachowiak et al., 2005; Olsen and Wilson,

2008). Both anatomy and function of this circuit are closely anal-

ogous to those of the vertebrate olfactory bulb (Friedrich and Lau-

rent, 2001; Korsching, 2002; Wilson and Mainen, 2006).

By comparing the output signals of the antennal lobe—the

firing of PNs—to the input—the odor concentration at the

antenna—one finds that this circuit imposes a great deal of

temporal patterning (Laurent, 1997; Laurent et al., 1996; Wehr

and Laurent, 1996, 1999). Following an odor step of steady

concentration, the firing rate of a PN typically waxes and wanes

over several seconds. The dynamics of this response are repro-

ducible but vary across PNs for a given odor and across odors

for a given PN (Laurent et al., 1996). Given this intricate time-

dependent response, one might worry that adding a strongly

time-modulated stimulus would greatly complicate analysis

and understanding. Fortunately, this is not the case. We found

that a simple mathematical relationship captures the response

of PNs to a time-varying odor stimulus: it includes a dynamic

linear filter and a static nonlinear transformation. The dynamics

of odor integration varied across PNs and across odors, reflect-

ing the multitude of signaling pathways within the antennal lobe.

Nevertheless, the range of dynamic behaviors in the population

was very restricted and could be parametrized by a single

number. These results lead to a ‘‘forward’’ model that predicts

accurately the PN response to a rapidly varying stimulus and

accounts for earlier observations on antennal lobe dynamics.

We also considered the ‘‘reverse’’ problem of extracting the

stimulus from the PN spike trains. Provided prior knowledge of

the odor identity, we found that less than a handful of PNs suffice

to reconstruct the time course of odor concentration to remark-

able accuracy.

RESULTS

Projection Neurons Reliably Track Rapidly
Varying Odors
We recorded the firing of 97 PNs in 8 locusts while an odorized air

stream flowed over the antenna. The odor was mixed into carrier
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Figure 1. Projection Neurons Respond Reliably to Rapidly Flickering Odors

(A) Odor delivery. A large tubing delivered carrier air. Two needles inserted near the orifice injected dilute odorant vapors. Each odorant tube was switched by

a solenoid valve. For single-odor experiments only one odorant tube was active.

(B) Locust preparation. One antenna was exposed to the odor delivery tube. Several silicon tetrodes were inserted in the antennal lobe for extracellular recording.

(C) Electroantennogram. A locust antenna was detached and thin wires inserted at either end. The voltage between the wires was recorded during odor exposure.

(D) Electric nose. A thin glass capillary tube was coated with a carbon-doped polymer film. A DC voltage was applied and the current measured during odor

exposure.

(E) Histogram of the odor concentration during the experiment, as measured by conductance of the electric nose. The center 8 deciles of the distribution span

a >10-fold range of concentration.

(F) State of the two odor valves in (A) during M sequence experiments using octanone alone (left), hexanol alone (center), and octanone and hexanol combined

(right). These conditions will be called ‘‘Oct,’’ ‘‘Hex,’’ and ‘‘Oct/Hex.’’ The full sequence lasted �102 s.

(G) Response of 10 sample PNs under the flickering odor stimuli of panel F. For each neuron, the raster plot shows spikes during 10 identical stimulus repeats

(sequence bottom to top).
air by a valve that opened and closed rapidly (see Experimental

Procedures; Figures 1A–1E). A pseudorandom valve control

signal was designed that effectively explored all odor fluctua-

tions on the time scale of 0.2 s to 2 s. We also built a small

odor sensor to confirm that changes in concentration at the

antenna were indeed both rapid and reproducible across

repeats. We used the odors hexanol and octanone, with con-
centrations adjusted to produce comparable activation of RNs

(assessed with an electroantennogram) and of PNs. The two

odors were presented individually, each according to a different

temporal sequence. In a third experiment, the two odor

sequences were mixed together in the air stream.

Many projection neurons responded reliably to one or both of

these odors with firing locked to the stimulus sequence over
Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc. 571
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many repeated trials (Figures 1F and 1G). Inspection of the raw

raster plots reveals a great diversity among the responses.

Some PNs are excited by the odor, others inhibited. Some PNs

fire only sparsely at precise instants during the sequence;

others are active half the time or more. Some PNs can track

even the shortest odor pulse; others seem to respond more

slowly. Finally, PNs that behave similarly under one odor can

differ greatly under another. We will now show that this observed

diversity can be mapped onto a small number of response

parameters.

A Simple Model Predicts Most PN Responses
Direct inspection of raster plots under a complex stimulus (Fig-

ure 1G) can give a qualitative impression, but any deeper inter-

pretation requires a quantitative analysis of each cell’s behavior.

For this purpose we sought a mathematical model of the

response that would predict the time-varying firing rate of each

PN from the preceding stimulus history. Here, we present this

model and its performance. Subsequent sections will use this

tool to inspect different aspects of PN behavior.

In the present experiments, a useful response model should

capture whether a PN is excited or inhibited by the odor, the

kinetics of its response, and whether it fires sparsely or densely.

The simplest formalism that meets these demands is the linear-

nonlinear (L-N) model (Figure 2A). In this scheme (Experimental

Procedures; Equation 2), the stimulus waveform is first passed

through a linear temporal filter with impulse response FðtÞ.
Then the output of that filter is transformed by a nonlinear func-

tion NðgÞ to give the predicted firing rate rðtÞ. The waveform FðtÞ
of the linear filter describes how the model neuron ‘‘weights’’ the

odor stimulus at various times in the past. In turn, the shape of

NðgÞ accounts for all the instantaneous nonlinearities in the

response. For now we merely seek a phenomenological model

and thus refrain from a biophysical interpretation of the filter

and nonlinearity. For each PN and each odor, we optimized the

shapes of FðtÞ and NðgÞ such that the time-varying firing rate

predicted by the model came closest to the observed firing

rate (see Experimental Procedures).

We first discuss in detail how the model fits the responses from

two sample neurons (Figures 2C–2H), followed in later sections

by statistics about the population. One of the sample neurons

(Figures 2C–2E) was inhibited by octanone, as revealed by the

negative-going filter shape. In fact, the time course of the filter

was biphasic: effectively, this neuron averaged the concen-

tration in the preceding 0.4 s and subtracted it from the

concentration in the 1 s prior to that. The nonlinearity resembled

a half-wave rectifier: no firing for a negative filter output (increase

in odor) and proportional firing for a positive output (decrease in

odor). The model prediction comes very close to the real firing

rate, with some systematic discrepancies that will be discussed

below. The same PN was also inhibited by hexanol, with a similar

filter shape and nonlinearity (Figure 2D). The other sample

neuron (Figures 2F–2H) was excited by an increase in octanone,

as revealed by a positive biphasic filter shape (Figure 2F). It was

inhibited by hexanol (Figure 2G). The nonlinearity was rectifying,

as for the preceding neuron, but with a higher threshold.

Correspondingly, this neuron fired somewhat less often. Again,

the L-N model accounted for many features of the neuron’s
572 Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc.
time-varying firing rate, though better for one odor (Figure 2F)

than the other (Figure 2G).

We also stimulated the antenna with the two different odor

sequences superposed. This two-odor stimulus delivered

essentially the arithmetic sum of the odor concentrations from

the two single-odor experiments. However, the firing responses

of the PNs were clearly different from the arithmetic sums of their

single-odor responses (Figures 2E and 2H; see also Broome

et al., 2006). Because the response to single odors is already

nonlinear (Figures 2C–2D, 2F, and 2G), one should not expect

plain summation across odors. A simple formalism that allows

nonlinear summation is the two-dimensional L-N model

(Figure 2B). In this scheme, the two odor sequences are each

passed through a linear temporal filter, and the two filter outputs

get combined through a nonlinear function to produce the

predicted firing rate. As before, the shapes of the temporal filters

represent the dynamics of stimulus integration, and the nonlinear

function reflects how the two odor stimuli interact. For each PN,

the two filters and the nonlinearity were optimized to produce the

best fit to the measured firing response.

For the two sample neurons (Figures 2E and 2H), this two-

dimensional L-N model correctly predicted most, though not

all, of the firing episodes. For both neurons, the nonlinearity

predicted a strong response only when both filter outputs are

high. Consequently, the predicted firing rate was considerably

sparser than the arithmetic sum of the two individual responses,

consistent with the measured responses. An interesting obser-

vation emerged from inspecting the temporal filters in the two-

odor condition. For one neuron (Figure 2E), these filter shapes

were almost identical to the corresponding filters in the single-

odor conditions. This implies that both odors had very similar

effects on the firing rate as when they were applied individually.

However, for the other neuron (Figure 2H), the filter for hexanol

changed sign: this odor inhibited the PN when applied by itself,

but excited it in the two-odor experiment. Such changes in

behavior will receive more scrutiny below.

To assess how well these L-N models capture neural

responses across the population, we compared several statis-

tics of the fits (see Experimental Procedures). A simple indicator

of the quality of the L-N fit is the difference between the predicted

and the actual firing rate: we measured the root-mean-squared

deviation between those two functions and call this the

‘‘residual’’ (
ffiffiffiffiffiffi
PR

p
in Equation 1). To evaluate this, we compare it

to a measure of reliability in the neural response, for which we

used the standard deviation of individual trials from the average;

this will be called the ‘‘noise’’ (
ffiffiffiffiffiffi
PN

p
in Equation 1). Finally, both

these quantities may be compared to the actual magnitude of

the neuron’s response. We measured this as the standard devi-

ation of the firing rate and call it the ‘‘signal’’ (
ffiffiffiffiffiffi
PS

p
in Equation 1).

Under all the stimulus conditions, the signal/noise ratio of the

response varied a great deal across neurons (Figure 3); mostly

this reflects the degree to which a neuron was responsive to the

odor tested. In the two conditions with single odors, the L-N fits

performed well (Figures 3A and 3B). For most neurons (92%,

dots above diagonal in Figures 3A and 3B), the residual was

smaller than the noise. This means that the L-N fit came closer

to the average response than the typical single trial. Even for

the PNs with the highest signal/noise ratio, the L-N model
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Figure 2. A Linear-Nonlinear Model Can Capture the Dynamic Odor Responses

(A) Diagram of the L-N model used to predict the PN response from the odor valve signal in the Oct and Hex single-odor experiments (see Equation 2).

(B) Diagram of the 2DL-N model used to fit the Oct/Hex two-odor experiment. Here each of the odor valve signals is passed through a separate filter, and the

results combined in a nonlinear function of two variables to yield the predicted firing rate (see Equation 5).

(C–E) Responses and model fits of a sample neuron (PN1 in Figure 1G) in the three conditions: Oct (C), Hex (D), and Oct/Hex (E). Left: Filter functions used in the

respective model. Middle: Nonlinearities that relate g(t) to the firing rate; note the function in (E) is two-dimensional (blue, low; red, high). Right: Actual firing rate

averaged over 10 trials (FR), model fit (L-N and 2DL-N), and the sum of the two single-odor firing rates (Oct+Hex in [E]).

(F–H) Responses and model fits of another sample neuron (PN5 in Figure 1F), displayed as in (C)–(E).
Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc. 573
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Figure 3. Linear-Nonlinear Models Provide

a Good Fit for Many PN Responses

Statistics for the responses of all recorded PNs

and their model fits in the three conditions: Oct

(A), Hex (B), and Oct/Hex (C). Each panel shows

one point per cell in a scatter plot of Signal/

Residual (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS=PR

p
, see Equation 1) against

Signal/Noise (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS=PN

p
). Diagonal line is the iden-

tity. For a cell with a point above this line, the model

fit is more accurate than the trial-to-trial variation in

the response. For further analysis of the model

parameters, we used the top 50% of cells accord-

ing to the reproducibility of the response, PS=PN.

Gray symbols: cells not used for any analysis.

Open symbols: cells used in analysis of one condi-

tion. Black symbols: cells used in analysis of both

Oct and Hex (A and B), or in all three conditions

(C). The numbers of cells selected this way were:

Oct, 48; Hex, 48; Oct and Hex, 28; Oct/Hex, 48;

Oct and Hex and Oct/Hex, 27.
approached this standard of accuracy. Because natural

behavior is generally based on single trials of any given odor

sequence, one can conclude that the L-N model is an adequate

expression of how such a neuron responds. In the two-odor

condition, the prediction error of the L-N model was somewhat

larger (Figure 3C; 63% of neurons had smaller residual than

noise). For the PNs with the highest signal/noise ratio, the fit’s

error was about twice the trial-to-trial noise.

For several PNs, we noticed substantial drifts in the firing rate

over the 10 stimulus repeats (�20 min; Figure 1G). This likely

reflects some adaptation process (Stopfer and Laurent, 1999)

rather than general decline of the preparation, since neurons

displaying increases and decreases of the firing rate could be

observed simultaneously. In such cases we performed separate

model fits to the early and late trials (see Figure S1 available

online). The fits performed equally well at both ends. In the

course of the drift, the nonlinearity changed, while the filter

remained unchanged.

A PN’s Response Is Characterized
by Just Three Numbers
In the following sections, we analyze the repertoire of response

properties in the PN population, based on the filter function

and nonlinearity obtained from the L-N model. To be confident

of the results, we restricted the analysis to sets of PN-odor pairs

with large signal/noise ratios, specifically the best 50% by this

criterion (Figure 3; Experimental Procedures). The excluded

data were primarily from neurons that happened to respond

only weakly to the odor in question, leading to an unreliable esti-

mate of their response parameters. Some key analysis steps

were repeated on the full data set.

The shape of the filter encompasses all the dynamics of a PN’s

response, and specifies how the response integrates odor

concentration from various times in the past. We collected all

the filter shapes from PN-odor combinations that passed the

above quality test, including single-odor and two-odor experi-

ments. The absolute amplitude of the filter function plays no

role in the response dynamics, since it is redundant with the

horizontal scale of the nonlinearity (Equation 2); therefore, we
574 Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc.
normalized all the filters to have unit variance. This family of filter

shapes was subjected to a principal component analysis, which

revealed two dominant components: one had an almost

monophasic shape, the other was sharply biphasic (Figure 4A).

These two principal components accounted for 74% of the vari-

ance in the filter set. When projected onto this two-dimensional

subspace, the filter functions fell close to a unit circle (Figure 4B).

Consequently, the filters could be parametrized almost entirely

by a single variable, the angle f around the unit circle (Figure 4B).

Specific values of f correspond to different response types: for

example, the Off-type hexanol response of Figure 2D has

f = 0:9p, and the On-type octanone response of Figure 2F has

f = :06p. When all the original filter functions were sorted by

this parameter f, they did indeed demonstrate a systematic

and smooth progression of shapes (Figure 4C).

Further evidence that f is sufficient to characterize the odor

response dynamics came from inspecting the raw firing

responses themselves. When one plots the firing rate of each

neuron during the flickering odor sequence (Figure 4D) and sorts

these responses according to the parameter f (Figure 4E), it is

clear that responses of similar type get grouped together. One

finds many events of high firing rate that are stereotyped across

cells (Figure 4D) but shift gradually in time with increasing f. This

shift reflects the gradual change in the filter shape (Figure 4F).

Therefore, what appeared as a broad and complex diversity of

response types in the raw measurements (Figure 1G) can now

be recognized as a continuous range of dynamics that vary

only along a single scalar dimension. Remarkably, the same prin-

cipal component shapes (Figure 4A) that define the parameter f

are appropriate for experiments with both single odors and also

the two-odor condition (Figure 4B). Furthermore, the distribution

of shapes is remarkably similar under the two odors (Figure 4E),

even though each individual neuron may change filter shape

(Figures 2F and 2G). This suggests that these shapes reflect

global aspects of processing in the antennal lobe, rather than

any odor-specific response properties.

To increase confidence in this analysis, we repeated it on the

full set of PN-odor combinations without any quality selection

(Figure S2). The first two principal components had the same
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Figure 4. The Diversity in PN Response Dynamics Can Be Captured by One Parameter

A statistical analysis of 192 filter waveforms from the Oct, Hex, and Oct/Hex conditions, selected by the criteria of Figure 3.

(A) The first two principal components of the filter set. These account for 74% of the variance in the set of waveforms.

(B) Projection of all filter waveforms onto the two principal components in (A). Because each filter is normalized to unit variance and the two axes account for much

of that variance, the points lie close to the unit circle. The points are color-coded by the angle f around the origin.

(C) Plot of all filter waveforms, ordered top-to-bottom and color-coded by the angle f from (B).

(D–F) Kinetics of PN responses, ordered by the angle f. (D) Measured firing rate of each neuron, one row per cell. The rate is represented in grayscale, normalized

to the average firing rate for each neuron. Here and in (E), (F), (H), and (I) the Oct and Hex plots include different sets of 48 PNs selected as in Figure 3. (E) The value

of f for each cell’s filter. (F) The corresponding filter functions, represented in grayscale (white positive, black negative).

(G–I) Nonlinearity of PN responses. (G) Example of a threshold-linear fit to a neuron’s nonlinearity, see Equation 7. (H) Relationship between gain and threshold for

PN responses in the Oct and Hex conditions. (I) Quality of the 3-parameter response fit. For each cell, the signal/residual ratio of the 3-parameter L-N fit (ordinate,

see Equation 9) is plotted against that of the unconstrained L-N fit (abscissa, Equation 2).
shape as before. The filters for the previously excluded

responses were simply contaminated by greater amounts of

noise, as expected from their weaker odor sensitivity.

The second component of the L-N model is the nonlinearity.

This function generally had a sigmoid shape with a baseline of

zero (Figure 2), reflecting the fact that the PN remains silent
except for certain periods when the stimulus crosses some

threshold (Figure 1G). Only rarely did we encounter significant

saturation at the top of the sigmoid. Thus, we fitted this shape

with a straight line, whose intercept and slope determine the

threshold and the gain of the response (Figure 4G). These two

response parameters were somewhat correlated across the
Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc. 575
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Figure 5. Response Dynamics Differ across Odors as Much as across Neurons

An analysis of the difference in a neuron’s filter under the two odors.

(A) For each neuron, the filters in the conditions Oct and Hex (circles joined by a line) are plotted on the graph introduced in (B). Analysis based on 28 PNs with

reliable responses under both Oct and Hex conditions (Figure 3).

(B) For each neuron from (A), the difference between the two filters for Oct and Hex is plotted as a vector from the origin (black). For comparison, the background

(gray) shows the difference between the filters of two different neurons to the same odor (either Oct or Hex), plotted for all possible pairs. Marginal histograms

show the distribution of differences along the two principal component axes.

(C) The average length of the difference vectors for the following filter comparisons: Left: same PN, Oct versus Hex. Middle: Oct, different PNs. Right: Hex, different

PNs. Error bars: SEM. The change in the filter shape of the same PN across odors is as large as the spread of filters for the same odor among different PNs.

(D–F) Same analysis, but for pairs of filters that result from 2DL-N fits for the Oct/Hex condition, presented as in (A)–(C). Based on 48 neurons with reliable

responses in the Oct/Hex condition (Figure 3).
population (Figure 4H): a combination of low threshold and low

slope reflects a response that is only weakly driven by the

odor. High threshold and high gain indicate a selective and

strongly driven response. The two odors elicited the same range

of nonlinearities (Figure 4H), as observed previously for the filter

(Figure 4E).

It appears therefore that each PN’s dynamic response to

a given odor can be summarized by just 3 numbers: f for the filter

shape, and threshold and gain for the nonlinearity. To test this

explicitly, we inspected the fits obtained from this 3-parameter

L-N model (Equation 9) and found that they match the true firing

rate almost as well as the unconstrained L-N fits (Equation 2),

with very little compromise (Figures 4I and S3).

Diverse Response Dynamics across Neurons and Odors
An important issue in exploring the PN population is whether

each neuron has a uniform response time course across odors.

For example, one neuron might be excited by all odors, another

inhibited. Contradicting this simple notion, we have already

encountered a PN with filters of opposite sign for hexanol and
576 Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc.
octanone (Figures 2F and 2G) and indeed a diversity of response

waveforms to different odors has been noted in previous work

(Laurent et al., 1996). The characterization of response dynamics

developed here (Figure 4) allows us to approach this issue more

quantitatively and test for a neuron-specific bias.

For this purpose, the analysis focused on neurons with reliable

filter measurements for both odors, presented either singly or

together (Figure 3). For each PN, we measured the change in

the filter shape between one odor and the other (Figure 5). These

PN-specific changes across odors covered a wide range; in fact,

they were as large as the differences between the responses to

the same odor of two arbitrarily chosen PNs (Figures 5C and 5F).

Thus, there was no detectable correlation between a given

neuron’s filters for different odors. In a statistical approximation,

this suggests a picture of the PN population in which each

neuron draws its response parameters at random from a limited

set of possible filters, and draws them independently for each

odor.

Once a neuron’s response dynamics for a given odor are

known, can they be altered by the context from other odors?
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Figure 6. Response Dynamics to One Odor Can Change in Presence of a Second Odor

An analysis of the difference in a neuron’s filters between the single-odor and two-odor conditions. Based on 27 neurons with reliable responses in the Oct, Hex,

and Oct/Hex conditions (Figure 3).

(A) In this graph, each PN contributes two points, joined by a line. The ‘‘1 odor’’ point reflects the shape of the two filters in the single-odor conditions Oct and Hex,

each projected onto the first principal axis (PC1 in Figure 4A). The ‘‘2 odors’’ point reflects the shape of the two filters in the two-odor condition Oct/Hex. The

difference between the two points represents the change in filter shapes along the PC1 axis introduced by the two-odor condition.

(B) The filter change from (A), plotted for each PN as difference vectors from the origin (black). For comparison, the background (gray) shows the difference

vectors obtained by comparing the single-odor filters (Oct and Hex) of two different neurons. Note the changes introduced by the two-odor condition are similar

in magnitude to the diversity of filter shapes across cells. Marginal histograms show the distribution of changes for octanone and hexanol filters respectively. The

distribution for the octanone filter is shifted significantly to positive values (t test, p = 0.04). This means that in the Oct/Hex condition, the octanone filter acquires

a greater component along PC1 (Figure 4A), and thus becomes more On-like.

(C and D) Same analysis, but projecting the filters onto the second principal component PC2 (Figure 4A), presented as in (A) and (B). Again, the shape changes are

large, but there is no systematic bias in one direction.
We already encountered an instance where the filter function for

one odor changed substantially in the two-odor condition

(Figure 2H). Again, the quantitative description of filter shapes

(Figure 4) allows a more careful analysis across the population.

This was restricted to the limited set of neurons for which high-

quality filter measurements were available under both single

odors and under the two-odor condition. In this group, many

PNs exhibited large changes in response dynamics under the

two-odor condition, even involving a change in sign of the

temporal filter (Figure 6). Indeed, the changes in filter shapes

were comparable in magnitude to the full range of filter shapes

across the entire population.
These shifts in filter dynamics point to the relevance of

nonlinear interplay between different signaling pathways within

the antennal lobe. Interestingly, the changes observed with this

stimulus set were not entirely random. For example, the filter

for octanone very often became more ‘‘On-type’’ in the presence

of hexanol (Figure 6B). The hexanol filter showed a similar trend,

though the magnitude was not significant. Clearly, future study of

these interactions will benefit from larger sets of PNs and odors.

Dynamics of the PN Population Vector
The above results lead to a simple but quantitative picture of

neural coding by the population of PNs in the antennal lobe
Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc. 577
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Figure 7. A Population of Linear-Nonlinear Model Cells Reproduces the Population Dynamics among PNs

(A) Population coding by a bank of L-N models. Each neuron is characterized by a filter and nonlinearity. In this way, the common stimulus sðtÞ is converted to

a population of firing rates rðjÞðtÞ.
(B–D) Parameters for a model of 8 L-N cells. (B) The linear filters were drawn from a circle in a shape space analogous to Figure 4B (Equation 11). (C) The resulting 8

filter waveforms (Equation 10). (D) The nonlinearity chosen for all 8 neurons: a rectifier with some maintained firing in absence of odor.

(E–H) Population activity of PNs under square odor pulses. Top: Experimental results from Mazor and Laurent (2005). Bottom: Results from the model in (A)–(D),

see Equations 10–15. (E) Sample firing rate of several PNs under a square odor pulse. (F) Trajectory of the population vector in response to two different odors.

The trajectories were projected into the subspace of the first three principal components and are viewed from a suitable angle. At the onset of the response

(arrows), the vector rapidly leaves the baseline (B) and makes a large excursion before reaching the fixed point (FP). At the offset it rapidly leaves the fixed point

then makes a large excursion back to baseline. The two odors make different trajectories (red versus blue). In computing the model response to the second odor,

the filter functions in (B) were reassigned randomly to the 8 neurons. (G) Length of the population vector in response to a 3 s odor pulse. (H) Distance between the

population vectors during responses to the two different odors.
(Figure 7A). A common dynamic odor stimulus is processed in

parallel by a bank of L-N pathways, each corresponding to one

PN. Across the PN population, the filters and nonlinearities follow

a statistical distribution as defined in Figure 4. Note, of course,

that this is a phenomenological model, not a mechanistic one;

in particular, we do not suggest that each PN has a private set

of neural connections to the stimulus. Nevertheless, such

a dynamic model should be useful in describing or simulating

odor coding in the antennal lobe and its consequences for down-

stream processing. As a test of such utility, we ask whether the

model can account for some of the salient phenomena of popu-

lation coding reported in prior work, under experimental condi-

tions different from the ones used here.

Several studies have compiled recordings from many locust

PNs that collectively provide a glimpse of the overall antennal

lobe output (Mazor and Laurent, 2005; Stopfer et al., 2003;

Broome et al., 2006; for mitral cells, see also Friedrich and

Laurent, 2001, 2004; Bathellier et al., 2008). In these experi-

ments, the stimulus was generally an odor pulse lasting between
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0.5 s and several seconds. To generate predictions from our

population model (Figure 7A), we simulated 8 L-N neurons and

probed them with square pulse stimuli. Reflecting the diversity

of the measured PN responses (Figure 4C), each neuron was as-

signed a different filter function chosen from a one-dimensional

family (Figures 7B and 7C). The nonlinearity took a simple

threshold-linear shape (Figure 7D, compare to Figure 4G) and

was identical for all 8 model PNs.

The responses of these model neurons to a 3 s long odor pulse

(Equation 12) bore good resemblance to the range of firing rate

dynamics observed experimentally (Figure 7E): the neurons

had some resting firing rate. Some cells were excited by the

odor, others suppressed. Some had strong transients at the

start, others at the end. The dynamics of this population

response are sometimes summarized by the ‘‘population

vector,’’ which is simply the list of all firing rates from projection

neurons (Equation 13), measured over successive time bins. The

output of the antennal lobe is then fully specified by the trajectory

that this vector executes in the course of an odor response.
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Some interesting phenomena have been reported about these

trajectories:

(1) Before the pulse, the population vector hovers at a resting

point given by the baseline firing rates of all the PNs

(Figure 7F; Mazor and Laurent, 2005). At the onset of

the odor pulse, the population vector rapidly moves

from the resting point through an extended trajectory. If

the pulse is long enough, the trajectory settles at an

odor-specific fixed point. When the pulse terminates,

the population vector returns from the fixed point back

to baseline via a different trajectory. Different odors evoke

different trajectories for the population vector. All these

phenomena are reproduced faithfully by the population

vector from the 8 model neurons (Figure 7F).

(2) Following such a trajectory, the distance of the population

vector from the baseline is typically much larger during

the on- and off-transients than at the fixed point

(Figure 7G; Mazor and Laurent, 2005). This implies that

odor detection is most sensitive at the transients. Again,

the L-N population model reproduces this effect faithfully

(Figure 7G).

(3) Comparing the population vectors for two different odors,

their distance is zero at rest, nonzero at the fixed points,

but considerably greater during the on- and off-transients.

This implies that the two population vectors are more

easily discriminated during the transients, and this

enhancement of odor differences has been proposed as

a principal function of antennal lobe dynamics (Friedrich

and Stopfer, 2001; Laurent, 2002; Mazor and Laurent,

2005). Again, the L-N population model has this same

property (Figure 7H).

In summary, much of the phenomenology reported previously

for the dynamics of the population vector can be reproduced if

one combines PNs described individually by a simple 3-number

response model (Figure 7A). The important ingredients for

getting the observed population effects are (1) the filters for

odor integration are generally biphasic, (2) across neurons, the

filters span a broad and more or less continuous range of

shapes, (3) across odors, the filter shapes for each neuron

change, spanning a similarly broad range of shapes. Note that

these successful simulations required no custom-tweaking

of the model parameters. Indeed, we obtained similar results

by performing the simulation using the actual L-N fits from

20 neurons recorded in this study (not shown).

Small Groups of PNs Encode the Odor Wave
Form Accurately
So far, the analysis has been concerned with a ‘‘forward’’

description of antennal lobe processing: given the stimulus,

what can one say about the response? A complementary

approach aims at a ‘‘reverse’’ description: given the spike trains

of PN neurons, what can be said about the stimulus? In a sense,

this formulation comes closer to the needs of the animal. To

explore this, we tried to reconstruct the stimulus waveform using

only the spike trains of projection neurons. Then we compared

this reconstruction to the actual stimulus. Note we do not
presume that the locust brain actually implements such an

explicit stimulus reconstruction. Instead, the analysis serves to

determine what information about the stimulus is transmitted

by the spikes of projection neurons to the rest of the locust brain.

The simplest approach to stimulus reconstruction is ‘‘linear

decoding’’ (Borst and Theunissen, 1999; Warland et al., 1997).

Here, each action potential triggers a short waveform of stereo-

typed shape—the ‘‘kernel’’ (Figure 8A). The running estimate of

the stimulus is simply the sum of all these waveforms (see Exper-

imental Procedures, Equation 16). When multiple neurons are

used for decoding, they each have a different kernel. Given the

observed spike trains and a record of the true stimulus, one

adjusts all the kernels to obtain the most faithful reconstruction.

Then the quality of this decoding can be evaluated on a separate

stretch of data.

For the odor octanone and the PN illustrated in Figures 8A and

8B, the optimal decoding kernel was a biphasic negative pulse

extending back in time to �0.8 s before the spike (Figure 8A):

An action potential from this PN ‘‘votes’’ that the octanone valve

was closed prior to the spike. Note this kernel differs substan-

tially from the filter obtained during forward analysis (cf.

Figure 2C for the same PN), a consequence of the nonlinear stim-

ulus-response relationship (Borst and Theunissen, 1999). The

convolution of this kernel with the spikes from a single trial yields

a continuous estimate of the stimulus (Figure 8B). One can take

the sign of this function to obtain a binary square wave function

that estimates when the valve is open (Figure 8B). Remarkably,

this estimate—obtained from a single recording of a single

PN—was correct 84% of the time. This was the highest value

observed among single PNs. The experiments with hexanol

yielded a similar reconstruction quality of 82%, but here

a different PN was most useful for the stimulus estimate.

As expected, combining spike trains from multiple PNs

improved the reconstruction quality (Figures 8C and 8D), but

only gradually: consulting the 5 most useful PNs, the state of the

valve could be estimated correctly 95% of the time for both octa-

none and hexanol. Ten neurons provided little additional perfor-

mance. Interestingly, stimulus reconstruction was quite success-

ful even in the two-odor experiments, where both valve states

need to be estimated simultaneously (Figure 8D). Here each PN

gives separate ‘‘votes’’ as to the state of the octanone and the

hexanol valve (Experimental Procedures). The best single neuron

estimated the two valves correctly at 70% and 79%; a group of

five neurons gave accuracies up to 86% and 85%. Ten neurons

increased the reconstruction quality to 90% for both odors.

The binary truncation of the stimulus reconstruction misses

some interesting aspects of neural coding. Note in particular

that the stimulus estimate in Figure 8B gets closer to the real

valve state during long closings than during short closings.

Essentially, the sign of this function is the best guess about the

state of the valve, but its magnitude reflects the level of certainty

in that estimate. To assess how the decoder’s information varies

with the rapidity of the valve switches, we computed power

spectra of the stimulus, the stimulus estimate, and the decoding

error (Figure 8E). From these, one can obtain the spectrum of the

information rate transmitted by the spike trains about the stim-

ulus (Experimental Procedures; Figure 8F). This allows some

interesting observations:
Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc. 579
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Figure 8. Small Groups of PNs Encode the

Dynamic Odor Stimulus with High Accuracy

(A and B) Reconstruction of the odor stimulus from

the spike train of a single PN on a single trial. (A)

The reconstruction kernel KðtÞ used for convolu-

tion with the spike train (Equation 16). (B) The spike

train rðtÞ (bottom), the convolution s0ðtÞ with the

kernel from (A) (middle trace), the binary estimate

of the valve state s00ðtÞ (middle bars, Equation 18),

and the true valve state sðtÞ (top bars). Condition:

Oct.

(C) Reconstructions of the odor sequence from

single trial responses of multiple PNs. For 1 cell,

we chose the PN with the best reconstruction (A).

Then we serially added to the group the PN that

improved the reconstruction the most. Condition:

Oct.

(D) Reconstruction quality, measured by the

fraction of correct estimates of the odor valve, as

a function of the number of contributing cells. In

the Oct/Hex condition, results are given for each

valve. As in (C), we started with the PN that gave

the best one cell reconstruction, then serially

added the PN that improved the reconstruction

the most. Bars show mean ± SEM across 10 trials.

Dashed line indicates chance performance of

50%.

(E) Power spectra of the stimulus, the reconstruc-

tion, and the reconstruction error (Equation 19), for

the one cell decoding of (B), averaged over 10

trials. Note the reconstruction error is large at

both low and high odor flicker frequencies.

(F) The information rate transmitted about the stim-

ulus by small groups of PNs. The curves show the

distribution across flicker frequencies (Equation

20), and the total information rate, measured in

bits/s, is the area under the curve. Condition: Oct.

(G) Information rate obtained from single PNs in

the Hex versus the Oct conditions. Each point

represents one PN. All 97 PNs are included. Solid

line: identity.

(H) Information rate obtained from single PNs in the

Oct/Hex condition (abscissa) compared to the

mean of the information obtained in the Oct and

Hex conditions (ordinate). Note most PNs convey

more information about the combination of both odors than they do on average about each odor alone (points above solid line, slope 1). Some PNs convey

more information about two odors than in both single-odor conditions combined (points above dashed line, slope 2).

(I) The information rate obtained from combining two PNs plotted against the similarity of their response dynamics. The ordinate plots the two-neuron information

rate relative to the average of the individual rates. The abscissa plots the difference of the two values for the angle f (Figure 4B) that characterizes each neuron’s

response filter in the L-N model. Note the benefit of combining two PNs is smallest when their filters are most similar (fz0). Condition: Oct. Analysis based on all

pairs among 48 PNs with reliable responses (Figure 3A). Bars are SEM across pairs of cells.
First, single neurons transmitted information about either odor

at rates up to �4 bits/s (Figure 8G). In two-odor experiments,

where a neuron can convey information about the state of both

odor valves, the information rates were comparable. Remark-

ably, some neurons conveyed more information about the stim-

ulus in the two-odor conditions than in both one-odor conditions

combined. The information conveyed by each spike ranged up to

1.5 bits, with an average across cells of 0.5 bits in the one-odor

and 0.7 bits in the two-odor condition. These values are remark-

ably similar to the information per spike encountered in visual,

auditory, mechanosensory, and electrosensory systems (Borst

and Theunissen, 1999; Warland et al., 1997), despite the

dramatic differences in stimulus dynamics. Second, the en-
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coded information was maximal for odor fluctuations around

0.8 Hz, with a substantial falloff at both lower and higher frequen-

cies, even though the stimulus covered a much broader spec-

trum (Figure 8E). Third, the information increased when multiple

neurons were included, and again there was a marked saturation

after the best five cells (Figure 8F).

Finally, the benefit from combining multiple neurons depended

considerably on which neurons were chosen. For example, in

Figure 8F, the second neuron added information about low

flicker frequencies, the third neuron about high frequencies.

One might expect this from the analysis of Figure 4, which

showed that the ‘‘preferred features’’ of PNs vary a great deal,

as summarized by the parameter f. Presumably two neurons
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that encode the same stimulus feature would be redundant,

whereas those with different preferred features would provide

complementary information. Indeed, we confirmed that

combining a pair of PNs with maximally different filter shapes

(Df = p=2) provided a great enhancement of the information

rate, approximately the sum of the individual rates (Figure 8H),

whereas similar filter shapes (Dfz0) provided less benefit. Inter-

estingly, combining PNs with opposite filter shapes (Dfzp) was

also beneficial. This can be understood based on the rectifying

nonlinearity in the response (Figures 4G and 4H): two neurons

with filters of opposite sign report different excursions of the

flickering stimulus (compare Figures 2C and 2F). Such comple-

mentarity between On- and Off-type responses also occurs in

the visual system (Warland et al., 1997).

We conclude that a small number of PNs provides sufficient

information to decode the time-varying concentration of an

odor stimulus with remarkable accuracy, provided one knows

what PNs to select. Because the range of dynamic features

reported by the PNs is rather limited (Figure 4), a few neurons

can cover this range effectively. At the same time, these limita-

tions explain why certain features of the stimulus are poorly rep-

resented, specifically components at high and low frequencies.

DISCUSSION

We explored the processing of rapidly varying odor stimuli in the

locust antennal lobe. The projection neurons produced complex

specific responses, varying in sparseness, timing, and intertrial

variability (Figure 1). For many PNs, responses were highly repro-

ducible across trials. The firing rate of individual PNs could be

fitted effectively by a simple mathematical model operating on

the odor stimulus (Figures 2 and 3). Just 3 numbers were suffi-

cient to specify the dynamics, threshold, and gain of the

response (Figure 4). Interestingly, individual PNs responded

with different dynamics to different odors: these filters varied

equally across PNs for each odor as across odors for each PN

(Figures 5 and 6). From this emerged a quantitative picture of

dynamic odor coding in the antennal lobe, which generalizes

and explains phenomena observed in previous studies (Figure 7).

Finally, we considered the task of downstream circuits to extract

the odor time course from PN spike trains and found that this can

be accomplished with high accuracy relying on just a few well-

chosen PNs (Figure 8).

Functional Modeling
The application of complex stimuli necessitates some mathe-

matical formalism to extract features of interest from the ensuing

spike trains. In this study, the linear-nonlinear model served this

purpose, as it has on many previous occasions (Chichilnisky,

2001; Nagel and Doupe, 2006; Hunter and Korenberg, 1986;

Mancini et al., 1990; Stockbridge et al., 1991; Poliakov et al.,

1997). We were somewhat surprised by the good performance

of this model, especially after the structure was simplified and

reduced to just 3 numbers for any given PN-odor combination

(Figure 4). This led us to a quantitative and predictive picture of

the entire PN population response (Figure 7A). Such a working

model of the antennal lobe output should be helpful in thinking

about odor coding, for example to evaluate future stimulus
designs, to predict population response patterns, to simulate

PN spike trains, or to model downstream processing. To demon-

strate the model’s utility, we showed that it extends beyond the

current study and that it accounts—without modification—for

many aspects of population dynamics reported previously. The

simple mathematical structure (Figure 7A) is an attractive

feature: all the calculations for Figure 7 were performed analyti-

cally, without numerical simulation.

That said, this working model does not account for every detail

of PN activity, and there is room for further developments. In

particular, a few neuron-odor combinations were poorly

described by the L-N fits, and this was more severe in the two-

odor condition (Figure 3C). Note that a single odor generally

drives multiple odor receptors. At high concentrations of the

ligand, high-affinity receptors saturate and low-affinity receptors

are recruited, which can alter the time course of the PN response

(Figure 9C). Use of multiple odors exacerbates this diversity

of receptor activations at the very input to the antennal lobe.

An improved treatment might be obtained from including the

binding nonlinearities directly, leading to an N-L-N model struc-

ture. Such an approach might also serve to explain the change in

filter shape caused by presence of another odor (Figure 6), which

falls outside the range of the current model. Another limitation

relates to the detailed time course of PN firing: The L-N fit gener-

ally predicts the moments during a complex odor sequence

when the neuron fires, but the shape of recorded firing events

is sometimes sharper and higher than predicted (Figure 2). This

same flaw has been noted in other sensory systems, where it

has been fixed by adding an explicit spike-generating mecha-

nism (Keat et al., 2001) or a gain control that depends on stimulus

history (Victor, 1987; Berry et al., 1999).

Neural Mechanisms of Response Dynamics
While the phenomenological model serves to summarize the

response properties of projection neurons, one would also like

to understand what neural mechanisms shape those responses.

In particular, the dynamics of a PN’s odor response—encapsu-

lated by the filter of its L-N fit—must reflect the entire chain of

events from odor binding through sensory transduction, synaptic

transmission, network processing within the antennal lobe, to

postsynaptic events and spike generation in the PN. Here, we

consider to what extent the known components and pathways of

the antennal lobe can explain the observed response dynamics.

To gauge the role of purely sensory transduction, we recorded

the electroantennogram (EAG) from an isolated antenna: this is

a field potential derived from the summed transduction currents

of many receptor neurons (Vickers et al., 2001; Boeckh et al.,

1965). The EAG was subjected to the same L-N analysis as the

PN responses recorded under the identical stimulus. The result-

ing filter function for the EAG was broad and monophasic

(Figure 9A). Among the PN filters, the fastest ones had a rising

phase and peak time very similar to the EAG. For these PNs,

antennal lobe processing seems to entail little delay beyond

sensory transduction, and they may well receive direct excitation

from the RNs. However, the falling phase of these PN filters was

considerably faster than for the EAG sensory response, leading

to biphasic shapes with noticeable undershoots. Other PNs in

the same experiment had filters of opposite sign or with
Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc. 581
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substantial delays of 0.3–0.4 s relative to the EAG. We conclude

from these measurements that the latency and overall time scale

of the PN response are determined by sensory transduction.

Within that range, the diversity of filter functions among PNs

reflects in part a diversity among receptors (Spors et al., 2006;

A

B

C

Figure 9. Response Dynamics and Neural Circuits in the Antennal

Lobe

(A) The role of sensory transduction. Filter functions obtained for octanone

responses of the electroantennogram (EAG, bold line) and of several projection

neurons (PNs, thin lines) measured in the same M sequence experiment.

(B) Sketch of the principal circuits among different populations (ovals) of

antennal lobe neurons. Receptor neurons (RNs) come in many types, of which

only two (a and b) are represented; each type excites a distinct population of

projection neurons (PNs). Local neurons (LNs) receive broad excitation from

RNs and PNs. They deliver broad inhibition to PNs and to LNs, and possibly

to RNs. Synapses are excitatory (closed circles) or inhibitory (open circles).

Unconfirmed connections are shaded.

(C) Convergence of pathways with different dynamics. Two of the many path-

ways by which the odor signal can travel from the RNs to a PN: direct excita-

tion, or inhibition via a local neuron. Next to each pathway is a plausible filter

shape for its kinetics. The PN pools these and other inputs, and its overall

response kinetics depend on the relative synaptic weight of each pathway. If

the RNs are of different types (e.g., RNa prefers odor A, RNb odor B) then

they will respond differently to the presented odors (bars). Depending on the

odor type (A versus B) and concentration (low versus high) the direct and indi-

rect pathways will be activated in different proportion, altering the response

dynamics of the PN.
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B. Raman et al., 2008, Soc. Neurosci., abstract) as well as the

internal dynamics generated by the circuits of the antennal lobe.

Most of this diversity among PN response dynamics was

captured by a superposition of just two waveforms (Figures 4A

and 4B). This could be explained by the confluence of two major

pathways through the antennal lobe. In the fruit fly (Komiyama

and Luo, 2006) and probably in other insects (Hansson and

Anton, 2000; Jortner et al., 2007), each PN receives direct

synaptic input from just one type of RN. Indirect input to the

PN, on the other hand, arrives from the pool of local neurons

(LNs), which connect promiscuously to many types of RNs and

PNs (Figure 9B). A direct path from RN to PN would likely

produce an On-type filter (Figure 9C), because RNs are generally

excited by odors (reviewed in Buck, 1996; though see Hallem

and Carlson, 2006) and are themselves excitatory. An indirect

path from RN to PN via a sign-reversing LN would produce an

Off-type filter (Figure 9C). Each PN’s response will then be

a weighted mixture of these two major pathways (Figure 4),

depending on the strength of its direct input from the RNs

activated by the odor (Figure 9C).

We also found that a given PN can exhibit very different

dynamics under different odors (Figure 5; see also Perez-Orive

et al., 2002; Broome et al., 2006). Again, this can be understood

by the convergence of direct and indirect pathways. A new odor

stimulates a different set of RNs (Figure 9C), altering the propor-

tion of direct and indirect input and thus the filter shape. Indeed,

thisargument explains why the family of filter shapesencountered

on changing odors should be the same as the shapes encoun-

tered across the population for a given odor (Figures 4 and 5).

Though the basic features of response dynamics in the PN

population can be understood from the known neural pathways

in the antennal lobe, the details of that circuitry may be rather intri-

cate. For example, in addition to the straight excitatory and indi-

rect inhibitory paths (Figure 9C), one can draw many elaborate

signal paths through the diagram of Figure 9B that involve

multiple LNs and PNs and feedback loops. These various paths

may well interact in very nonlinear fashion, for example via

presynaptic inhibition. That could account for some of the more

intricate functional observations, specifically that the dynamics

of a PN’s response to one odor can change in the presence of

another odor (Figures 2F–2H and 6). Such effects cannot be

explained by weighted summation over parallel pathways

(Figure 9C). Since mixtures of odor plumes are common in the

environment, it will be useful to pursue the effects of dynamic

odor mixing further, and they will likely provide qualitatively

different insights about antennal lobe processing. As we have

seen, the basic L-N model can serve as a useful working frame-

work that highlights unexpected phenomena.

Decoding of Odor Signals
It seems remarkable that the time course of such a rapidly

varying and complex odor waveform can be estimated quite

accurately from the spikes of just a few PNs, or even a single

one (Figure 8C). This is probably related to our finding that the

response dynamics in the PN population are well described by

a two-component set of curves (Figure 4). Accordingly two

well-driven neurons that represent one component each should

cover most of the accessible range of odor fluctuations
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(Figure 8F). Of course, the most useful subset of PNs for any such

estimation depends on the odor identity and can therefore be

determined only once the odor has been identified. For a given

olfactory task, downstream circuits might be able to learn the

identity of this subset from experience. Such learning would

require inspecting many possible subsets of PNs, and assessing

their utility based on subsequently assessed value. The mush-

room body might play such a role.

The decoding analysis also revealed the limits of what the

locust brain can extract from the firing of PNs. These are best

appreciated in the frequency domain: Stimulus reconstruction

was optimal for odor fluctuations around 0.8 Hz and degraded

substantially at both lower and higher frequencies (Figure 8E).

The failure at low frequencies means that the brain has little

access to the DC level of odor concentration. This is consistent

with the biphasic waveform of most PN response filters (Figure 4).

The roll-off at high frequencies reflects the temporal averaging of

the odor concentration, which is likely dominated by the slow

process of sensory transduction. As a result, we predict that

locusts should be most sensitive to fluctuations around 0.8 Hz.

It could be rewarding to measure these dynamics of odor coding

in the antennal lobe for insects with different lifestyles or flight

patterns, and explore whether their sensitivity spectrum is adap-

ted to the environmental spectrum of fluctuations, as has been

observed in the insect visual system (O’Carroll et al., 1996).

EXPERIMENTAL PROCEDURES

Stimulation

The experiments required reproducible delivery of a rapidly varying odor stim-

ulus to the locust’s antenna (Figures 1A–1D). A stream of desiccated and

filtered carrier air was blown through a delivery tube aimed at the antenna (Fig-

ure 1A). Odorized air was injected into this tube a short distance upstream from

the orifice to minimize the mixing time. The flow through the injector line was

switched by a fast solenoid valve, and compensated by a change in the carrier

flow to keep the overall flow rate constant. To superpose two odors with inde-

pendent modulation, we added a second injector line and valve. The valves

were controlled by a custom computer interface (LabView). To produce the

odors, desiccated filtered air was passed through a vial containing 1-hexanol

or 2-octanone (Sigma), diluted 1:100 in mineral oil (J.T. Baker). Given the

various dilution steps, we estimate the final concentrations of the two odors

at 10�4–10�3 of the saturated vapor. The concentrations were chosen to yield

about equivalent and subsaturating responses in the electroantennogram

(EAG). The dynamic variations of odor concentration were measured with

a custom electric sensor (see Supplemental Data). A large vacuum hose was

placed behind the animal to rapidly remove odors from the antenna.

Recording

Experiments were performed on 8 young (<14 days post-fifth-instar) male

locusts (Schistocerca americana) that were raised in a breeding colony. The

locusts were immobilized in wax cups atop Plexiglas holders with their

antennae protruding from the cup through small-diameter Teflon tubing. The

brain was exposed by removing the cuticle and sheath while the top half of

the head was submerged in locust saline, as previously described (Laurent

and Davidowitz, 1994; Stopfer and Laurent, 1999). Silicon tetrodes obtained

from the Center for Neural Communication Technology were used to record

PN activity (Drake et al., 1988). Silicon probes were placed into the antennal

lobe at different sites for each experiment, chosen to maximize detectable

activity. Spikes were sorted from the tetrode signals using custom algorithms

(Pouzat et al., 2002). All recorded spikes were assigned to PNs, because inter-

neurons of the locust antennal lobe do not produce fast action potentials (Lau-

rent and Davidowitz, 1994).
Stimulus Design

In early experiments, we mapped the general time scale of the PN response.

Some PNs responded reliably to valve openings of just 100 ms, but most

were somewhat slower. The response typically started several 100 ms after

the valve opening and ended after 2 s or less. With these parameters in mind,

we designed an appropriate broadband flicker stimulus. The odor valve was

switched on and off according to a 9-bit M sequence (Golomb, 1967; Schuckel

and French, 2008). This is a pseudorandom sequence of zeros and ones that

presents all possible binary words of length 9 exactly once. Each ‘‘1’’ (odor

on) or ‘‘0’’ (odor off) lasted 0.2 s, and a 9-bit word spanned 1.8 s. Thus, the stim-

ulus produced all possible odor patterns of length 1.8 s—comparable to the

integration time of a PN’s response—at a resolution of 200 ms—comparable

to the temporal resolution of a PN. These stimulus statistics also approximate

the structure of natural odor plumes measured in wind tunnels, which involve

the random overlay of concentration transients of about 0.2 s duration (Justus

et al., 2002). The experiment involved stimulation first with odor A alone, then

odor B alone, then with both odors together but modulated independently. In

each case, delivery of the full M sequence required � 29,0:2 sz102s. This

was repeated for 10 trials to assess reproducibility of the neural responses.

Analysis

Preprocessing

For each cell and each trial, spike times were histogrammed in 0.01 s bins. The

result was smoothed by a Gaussian with standard deviation of 3 bins. The firing

rates were computed as the average of smoothed spike trains from 10 trials.

The waveforms of the valve state and of the electronic nose were also sampled

at 0.01 s resolution. In all the analyses reported here, the stimulus variable is

the binary state of the solenoid valve; this proved more reliable than the elec-

tronic nose signal (see Supplemental Data).

Notation

We will use the following notation:

riðtÞ= firing rate during trial i; sampled every 0:01 s

rðtÞ= hriðtÞii = firing rate averaged over all trials

r = hrðtÞit = mean firing rate over all trials and time

sðtÞ= valve state = { �1;off

+ 1;on

r0ðtÞ= firing rate predicted from the stimulus by some model

PS = ‘‘signal power in the response’’

= variance of firing rate over time =
D
ðrðtÞ � rÞ2

E
t

PN = ‘‘noise power in the response’’

= variance of firing rate over trials; averaged over time

=
DD
ðriðtÞ � rðtÞÞ2

E
i

E
t

PR = ‘‘power in the residual of a fit’’

= squared error of the fit; averaged over time

=
D
ðr0ðtÞ � rðtÞÞ2

E
t

ð1Þ

L-N Model

In the L-N model of the odor response (Figure 2A), the stimulus waveform sðtÞ
is first passed through a linear filter FðtÞ; the output of that filter is then trans-

formed by a nonlinear function NðgÞ to produce the neuron’s estimated time-

varying firing rate,

r 0ðtÞ= N

0
@ Z t

�N

sðtÞFðt � tÞdt

1
A: (2)

Fitting the model for a specific PN involves optimizing the functions FðtÞ and

NðgÞ so as to minimize the difference between the predicted firing rate r0ðtÞ and

the measured rate rðtÞ. Following established practice (Chichilnisky, 2001) we

first performed a linear regression to compute the filter FðtÞ that produced the

best linear fit between the stimulus sðtÞ and the observed response rðtÞ, mini-

mizing the squared error,

min
FðtÞ

Z
ðgðtÞ � rðtÞÞ2dt; where gðtÞ=

Z
sðtÞFðt � tÞdt: (3)
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This deconvolution operation is sensitive to high-frequency noise; we there-

fore smoothed the filter using a singular value decomposition restricted to the

first 20 components. The resulting waveform was truncated to a length of 2 s

and normalized to have unit variance,

Z2s

0

ðFðtÞÞ2dt = 1: (4)

Then we plotted the observed firing rate rðtÞ against the filter output

gðtÞ for all time points and averaged both quantities over bins of g contain-

ing equal numbers of points. This resulted in a piecewise linear function

NðgÞ.
In general, the model parameters were fit to the data over the first 80 s of the

odor sequence. The remaining 22 s were used to test the quality of model

predictions.

2DL-N Model

We expanded the L-N model to two dimensions (2DL-N model) to fit the firing

rate of the neurons under the Oct/Hex condition (Figure 2B). The estimated

firing rate of the neuron r0ðtÞ was modeled as a 2-dimensional nonlinear trans-

formation Nðga;gbÞ of the two odor-pulse sequences, saðtÞ and sbðtÞ,
convolved with two distinct linear filters, FaðtÞ and FbðtÞ,

r 0ðtÞ= N

�Z
saðtÞFaðt � tÞdt;

Z
sbðtÞFbðt � tÞdt

�
: (5)

The filters FaðtÞ and FbðtÞwere again fitted through reverse-correlation of the

response rðtÞ with the stimuli, saðtÞ and sbðtÞ, respectively,

min
FaðtÞ

R
ðgaðtÞ � rðtÞÞ2dt; where gaðtÞ=

R
saðtÞFaðt � tÞdt

min
FbðtÞ

R
ðgbðtÞ � rðtÞÞ2dt; where gbðtÞ=

R
sbðtÞFbðt � tÞdt:

(6)

The two-dimensional nonlinearity Nðga;gbÞ was constructed by plotting the

observed firing rate rðtÞ against the filter outputs gaðtÞ and gbðtÞ for all time

points and averaging all three quantities over bins of ga and gb containing

equal numbers of points.

Linear Filter Analysis

The ensemble of filter functions obtained from the model fits was subjected to

a principal component analysis. We computed the eigenvectors and eigen-

values of the crosscorrelation matrix of the filters and picked the two eigenvec-

tors with the highest eigenvalue, P1ðtÞ and P2ðtÞ (Figure 4A). In Figures 4B, 5A,

and 5D, each dot is the projection of a filter function FðtÞ onto the two principal

components, with coordinates x =
R

FðtÞP1ðtÞdt and y =
R

FðtÞP2ðtÞdt. Accord-

ingly, the angle f assigned to a filter is f = arctanðy=xÞ. In Figure 4D, we plot the

firing rates rðtÞ of many PNs, with each cell’s rate normalized by its mean value.

In Figure 6A, we plot the projections of the filters FaðtÞ and FbðtÞ for the same

neuron onto P1ðtÞ. Each dot has coordinates x =
R

FaðtÞP1ðtÞdt and

y =
R

FbðtÞP1ðtÞdt. In Figure 6C, we plot the projections onto P2ðtÞ, namely

x =
R

FaðtÞP2ðtÞdt and y =
R

FbðtÞP2ðtÞdt.

3-Parameter Fits

To capture the response model with just 3 parameters, the measured nonlin-

earity NðgÞ was approximated as a threshold rectifier determined by two

numbers, namely

N0ðgÞ= 0; if g < a
bðg� aÞ; if g > a

; where a = threshold and b = gain:

�
(7)

The filter was approximated by a linear combination of the two principal

components, determined by the angle f:

F 0ðtÞ= cosf,P1ðtÞ+ sinf,P2ðtÞ: (8)

Then the predicted response was given by

r0ðtÞ= N0
�Z

sðtÞF 0ðt � tÞdt

�
: (9)

Figure 4H illustrates the relationship between the threshold a and the gain b

(Equation 7). Figure 4I compares the quality of the 3-parameter fit (Equation 9)

to that of the unconstrained L-N fit (Equation 2).
584 Neuron 61, 570–586, February 26, 2009 ª2009 Elsevier Inc.
Population Model of Pulse Responses

We simulated a model network of 8 PNs whose odor responses

rðjÞðtÞ; j = 1;.; 8 followed the L-N model. Each neuron’s linear filter FðjÞðtÞ
was chosen as a weighted sum of two principal components

FðjÞðtÞ= xðjÞP1ðtÞ+ yðjÞP2ðtÞ: (10)

The shapes of P1ðtÞ and P2ðtÞ were inspired by the measured components

(Figure 4A), in particular

P1ðtÞ= ðt=tÞne�t=t � a
2
ðt=2tÞne�t=2t

P2ðtÞ=
d

dt
P1ðtÞ

with t = 0:08 s; n = 5; and a = 0:8

: (11)

The coefficients ðxðjÞ; yðjÞÞwere chosen from a unit circle (Figure 7B), yielding

the 8 filter shapes FðjÞðtÞ in Figure 7C. The nonlinearity NðgÞwas identical for all

8 cells: a linear half-wave rectifier with negative threshold (Figure 7D). The odor

input was modeled as a square pulse of amplitude A and duration T = 3 s,

yielding a model firing rate (Figure 7E) of

rðjÞðtÞ= N

�Z
sðtÞFðjÞðt � tÞdt

�
= N

0
@ ZT

t = 0

A,FðjÞðt � tÞdt

1
A: (12)

The population vector has as its components the firing rates of the individual

PNs:

v!ðtÞ=
�
rð1ÞðtÞ;.; rðnÞðtÞ

�
: (13)

The distance of the population vector from baseline (Figure 7F) was

computed as

j v!ðtÞ � v!ð0Þj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j = 1

ðrðjÞðtÞ � rðjÞð0ÞÞ2
vuut : (14)

To model the response to a second odor (Figure 7G), the 8 filter shapes

FðjÞðtÞ were randomly reassigned to each of the 8 neurons. The distance

between two population vectors under the two different odors (Figure 7G)

was computed as

j v!aðtÞ � v!bðtÞj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j = 1

�
r
ðjÞ
a ðtÞ � r

ðjÞ
b ðtÞ

	2

vuut (15)

where r
ðjÞ
a ðtÞ and r

ðjÞ
b ðtÞ are the responses of neuron j under the two odors. This

distance was further averaged over all possible assignments of the 8 filters to

the 8 neurons.

Decoding

For reconstruction of the stimulus and information estimates from spike

trains (Figure 8), we followed established procedures (Borst and Theunis-

sen, 1999; Warland et al., 1997), summarized here in brief. To obtain a linear

estimate of the stimulus, each spike train was convolved with a kernel func-

tion (Figure 8A), and the results were summed to produce the stimulus esti-

mate:

s0ðtÞ=
X

j

Z
rðjÞðtÞKðjÞðt � tÞdt (16)

where

s0ðtÞ= stimulus estimate

rðjÞðtÞ= firing rate of cell j

KðjÞðtÞ= decoding kernel of cell j:

The kernels were optimized by linear regression to minimize the squared

deviation between the actual and the estimated stimulus,
R
ðs0ðtÞ � sðtÞÞ2dt.

In the two-odor experiments, each cell has two decoding kernels, one for

each of the two stimulus estimates:

s0aðtÞ=
P

j

R
rðjÞðtÞKðjÞa ðt � tÞdt

s0bðtÞ=
P

j

R
rðjÞðtÞKðjÞb ðt � tÞdt:

(17)
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In computing the decoding filters, we averaged the firing rate rðjÞðtÞ over

all repeated trials using 80% of the stimulus sequence. In performing the

stimulus reconstruction, we used the spike train from a single trial on the

remaining 20% of the sequence. To make a binary guess for the state of

the odor valve (Figures 8B and 8C), we took the sign of the stimulus

estimate,

s00ðtÞ= signðs0ðtÞÞ: (18)

The quality of this estimate was measured by the fraction of time it agreed

with the actual valve state sðtÞ.
The frequency-dependence of the reconstruction quality was assessed by

comparing various power spectra,

PsðfÞ= power spectrum of the stimulus sðtÞ
Ps0 ðfÞ= power spectrum of the stimulus estimate s0ðtÞ
PeðfÞ= power spectrum of the error eðtÞ= s0ðtÞ � sðtÞ:

(19)

All spectra were computed by the Welch method with 1024 or 512 point

segments.

Given an estimate of the stimulus obtained from the responses, a lower

bound on the information rate transmitted by the spike trains (Borst and The-

unissen, 1999) is given by

ILB =

ZN

0

log2

PsðfÞ
PeðfÞ

df : (20)

If the estimate is obtained from linear decoding, then this bound is equal to

ILB = �
ZN

0

log2

�
1� jCrsðfÞj2

	
df (21)

where CrsðfÞ is the coherence spectrum between the response rðtÞ and the

stimulus sðtÞ. When there are two uncorrelated stimulus variables, as in the

two-odor condition, one can show by the same methods that the information

rate is greater than

ILB = �
ZN

0

log2

�
1� jCraðfÞj2�jCrbðfÞj2

	
df (22)

where CraðfÞ is the coherence spectrum between the response rðtÞ and the

stimulus saðtÞ, and CrbðfÞ is the coherence spectrum between the response

rðtÞ and the stimulus sbðtÞ.
For each cell, the information rate was computed for each individual trial,

and then averaged over trials. The information per spike was computed by

dividing the information rate by the average firing rate. This was analyzed for

all neurons that fired at least 1 spike/s.

SUPPLEMENTAL DATA

The Supplemental Data include three figures and supplemental text and can

be found with this article online at http://www.neuron.org/supplemental/

S0896-6273(09)00088-9.
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Electric Nose Measurements 

To measure the dynamics of odor concentration delivered by our apparatus, we constructed a 

sensor that mimicked the slender shape of the locust antenna. A thin glass capillary (Warner 

Instrument Corp.) was coated with a film of doped polymer (mixture of carbon black, 

polyethylene vinyl di-acetate and resin) using an airbrush and established protocols (Matzger, A. 

J., Lawrence, C. E., Grubbs, R. H., and Lewis, N. S. 2000. Combinatorial approaches to the 

synthesis of vapor detector arrays for use in an electronic nose. J Comb Chem 2, 301-304). 

Electrical contacts were made on either side of a 3 mm exposed patch of polymer by attaching 

copper wires to the glass with silver paint. At baseline, the electrical resistance ranged between 

50 kOhms and 500 kOhms. Exposure to vapor increased the resistance. Recordings with this 

sensor showed that the odor concentration can be rapidly switched on and off every 100 ms. The 

timing of successive odor pulses was highly reproducible: the delay between valve opening and 

half-maximal rise of the odor pulse varied by only 0.7 ms (SD). This indicates that the odor can 

indeed be modulated rapidly and reliably, and over a wide range of concentration (Fig 1E). 

In all our reported analyses, the stimulus is the binary state of the solenoid valve in the odor 

injector line. We considered using the signal from the electric odor sensor, but rejected it for the 

following reasons. First, the detailed waveform reported by these electric sensors varied 

considerably among different devices. Second, when we did perform some L-N model fits of 

neural responses starting from the sensor output, they were less successful than L-N fits starting 

from the valve signal; they required more convoluted and acausal filter waveforms; and they 

depended on the device used. These observations suggest that the polymer sensor introduced 

significant dynamics and distortion in the reported signal. While the sensors served to confirm 

that odor modulation is rapid and reproducible across trials, they need to be engineered further to 

provide a quantitative record of odor concentration. In evaluating the reported filter shapes F t( ) , 

one therefore needs to recall that these include a brief delay of <0.1 s from valve opening to odor 



 

onset. This air-flow delay is short compared to the neural response delays, and it is identical for 

all neurons in the sample. 

 
  

Figure S1. Change in L-N Fits across Trials 

Some PNs showed a systematic change in firing rate over the ten trials (Fig 1G). Here we 

evaluate what aspects of the odor response change during this period. The 3-parameter L-N 

model (Eqns 7-9) was fit to the first 3 trials and again to the last 3 trials. Analysis included 48 

PNs each with reliable responses in the Oct, Hex, and Oct/Hex conditions (Fig 3).  

A. The ratio Signal/Residual ( PS PR , see Experimental Procedures) compared in early and 

late trials. Line is the identity. By this measure, the goodness-of-fit is comparable in early and 

late trials.  



 

B. The threshold of the nonlinearity (Eqn 7) compared in early and late trials. On average, 

thresholds increase somewhat in late trials. 

C. The slope of the nonlinearity (Eqn 7) compared in early and late trials. This parameter 

reflects the gain of the response and changes considerably between early and late trials, 

increasing for some PNs and decreasing for others.  

D. The shape of the filter compared in early and late trials, as summarized by the shape 

parameter φ  (Eqn 8). Note that the filter shape remains essentially the same throughout all trials. 



 

 

 
 

Figure S2. Principal Component Analysis of All Filter Waveforms 

The analysis of Figure 4 was restricted to the PNs with the most reliable odor responses, selected 

as the top 50% in terms of Signal/Noise ( PS PN , see Fig 3). Here we test whether the excluded 

cell/odor combinations with weaker responses had some systematically different kinetics, by 

repeating the analysis of filter shapes over all neurons. We found no evidence for additional 

kinetic components.  

A. The first two principal components of the filter shapes, computed either for the selected 

48 strong responses (same as Fig 4A) or for all 97 responses. No systematic difference is 

discernable.  

B. The filter shapes projected onto the first two principal components, PC1 and PC2 from 

panel A. The selected filters for strong responses lie close to the unit circle (same as Fig 4B), 

because these two components account for most of their variance. The excluded filters for weak 

responses fill more of the space within the circle, because they are corrupted by noise with 

random waveform other than PC1 and PC2. The fact that PC1 and PC2 are virtually identical to 

those of the strong responses (panel A) confirms that this noise has no systematic component.  



 

 

 
 

 

Figure S3. Frequency-Dependence of the 3-Parameter L-N Model Fits 

For most cell-odor combinations, the 3-parameter L-N model fits almost as well as the 

unconstrained L-N model (Fig 4I). On average there is a small loss in fit quality, more so for 

some cells in the Oct condition. Here we explore the nature of these losses. In particular, one 

might worry that the 3-parameter model fails at high frequencies, because the waveform of the 

filter function was approximated by just 2 principal components with rather smooth waveform 

(Fig 4A). This concern was not validated. 

A. Power spectrum of the response r t( )(see Eqn 1), the residual ′r t( )− r t( ) from the 

unconstrained L-N fit, and the residual from the 3-parameter fit. Results were averaged over all 

48 selected cells (Fig 3) in the Oct condition.  

B. Power of the two residuals plotted as a fraction of the power in the response. Note the two 

residuals have very similar frequency dependence. 
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