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Natural vision is a highly dynamic process. Frequent body, head, and eye movements constantly
bring new images onto the retina for brief periods, challenging our understanding of the neural code
for vision. We report that certain retinal ganglion cells encode the spatial structure of a briefly
presented image in the relative timing of their first spikes. This code is found to be largely invariant
to stimulus contrast and robust to noisy fluctuations in response latencies. Mechanistically, the
observed response characteristics result from different kinetics in two retinal pathways (“ON” and
“OFF”) that converge onto ganglion cells. This mechanism allows the retina to rapidly and reliably
transmit new spatial information with the very first spikes emitted by a neural population.

During natural vision, our gaze remains
fixed for a mere fraction of a second.
Sudden movements of the eye, called

saccades, partition visual processing into short
episodes (1, 2). Each saccade exchanges the
image that falls onto the retina; the new visual
stimulus is then encoded into neural activity to be
transmitted to the brain. Our visual system can
analyze and classify a new complex scene in less
than 150 ms (3), but the nature of the neural code
that underlies this rapid visual processing has
been elusive. Neurons in the vertebrate retina fire
with remarkable temporal precision (4, 5), so
single spikes can, in principle, carry substantial
information about visual stimuli. In order to
assess how the retina transmits new visual in-
formation after a saccade, we investigated the
responses of retinal ganglion cells to flashed vi-
sual images.

Spike trains were recorded simultaneously
from many ganglion cells in the isolated sala-
mander retina. The stimulus was a uniform gray
field followed by appearance of a square-wave
grating. Eight different shifted versions of the
grating were used in a pseudo-random sequence.
A ganglion cell typically responded to the ap-
pearance of the grating with a short burst of
spikes (Fig. 1), and the vast majority of cells re-
sponded to most or even all of the stimuli. We
characterized each burst by two numbers: the la-
tency of the first spike after stimulus onset and
the total spike count in the burst. For certain cell
types, in particular fast and biphasic OFF cells
(fig. S2), the spike count was very similar for all
stimuli (Fig. 1B). By contrast, the spike latency
for these cells varied across stimuli by as much as
40ms (Fig. 1C). For repeats of the same stimulus,
this latency was very reproducible, with a stan-
dard deviation of only 3 to 5 ms.

We calculated how much information the
spike latency or the spike count conveys about
which grating had been presented. Perfect iden-

tification of the stimulus among eight possibili-
ties amounts to a maximum of 3 bits. The spike
latency of a ganglion cell transmitted up to 2 bits
of information on a single trial. The spike count
provided considerably less information for the
majority of all recorded cells (Fig. 1D). Subse-
quent brain regions may thus learn more about
the stimulus from noting the time of the first
spike after stimulus onset than by waiting for all
spikes and noting the average firing rate.

In several sensory systems, shorter spike la-
tencies result from stronger stimulation (6–9).
This does not account for the present dependence
of latency on spatial pattern. Stronger stimuli often
generate higher spike counts, and indeed, gratings
of higher contrast produced both more spikes and
shorter latencies (fig. S3). By contrast, we ob-
served a pronounced spatial tuning of the spike
latency even when there were virtually no varia-
tions in spike count (Fig. 1); in some cases, shorter
latencies even occurred in combinationwith fewer
spikes (fig. S3).

Downstream brain centers can interpret the
latency of a single neuron only if the onset time
of the stimulus is known (10). If the new retinal
image was initiated by an eye movement, then
the brain does know the onset time, but it is un-
clear whether this motor information gets distrib-
uted to visual centers. We therefore asked what
information can be extracted from visual signals
alone by comparing latencies from neurons in the
population (Fig. 2). For many pairs of ganglion
cells, the difference between first spike times was
strongly tunedwith respect to the presented stimuli
(Fig. 2C). In fact, the information contained in
the latency difference reached values higher than
2 bits (Fig. 2D)—more than that from any single-
cell absolute latency. One reason was the par-
ticular robustness of the latency difference to
retinal noise. Each cell’s latency underwent some
trial-to-trial variation, but these fluctuations were
often positively correlated in cells recorded simul-
taneously; when cell 1 fired earlier than usual, cell
2 tended to do the same (Fig. 2B). As a result, the
latency difference (Fig. 2C) fluctuated less than
expected from the noise in individual cell
latencies (Fig. 2A). To assess the relevance of
this compensation, we destroyed the noise cor-
relations artificially by pairing the response of

cell 1 with the response of cell 2 on the sub-
sequent trial; this led to a substantial information
loss of up to ~20% (Fig. 2D).

Stimuli of greater strength tend to produce
shorter spike latencies in the sensory response. If
the latencies of different neurons in the popula-
tion are affected in similar fashion, downstream
circuits might use the difference in spike latencies
to extract stimulus quality independent of stim-
ulus strength (11). We therefore presented the
flashed gratings at different contrast levels. As ex-
pected, individual latencies increased at lower
contrast. However, the shape of the latency tuning
curve was well preserved at each contrast level
(Fig. 2, E and F). Furthermore, the contrast-
dependent shifts of the latency tuning curves
were similar for different cells. As a result, the
latency difference between two neurons was al-
most perfectly invariant to changes in contrast
(Fig. 2G). In fact, a downstream decoder could
recover almost all the spatial information without
knowing anything about the contrast of the stim-
ulus (Fig. 2H).

How can the observed latency code be ex-
plained in terms of neural mechanisms? We start
by considering a standard framework for visual
responses (12, 13) and exploring its prediction
for first-spike latencies. In this picture, the stim-
ulus is first passed through a linear filter that
summarizes retinal integration of the image over
space and time (Fig. 3A). The “activation” signal
emerging from the filter can be interpreted as the
membrane potential of the ganglion cell. When
this signal crosses a preset threshold, the model
neuron fires a spike. For each ganglion cell, we
measured the spatiotemporal filter in a separate
reverse-correlation experiment (fig. S1) (14),
whereas the threshold remained as a single free
parameter. In using this model to process grating
stimuli, one quickly finds that it cannot account
for the observed responses. Because the stimulus
is integrated linearly, a certain grating may elicit
strong excitation, but then its sign-reversed coun-
terpart will elicit inhibition and produce no spikes
at all, counter to what was observed experimen-
tally (Fig. 3, B and C).

Thus, one is forced to include nonlinear pro-
cessing steps. Ganglion cells draw their excitato-
ry input from bipolar cells (Fig. 3D). These have
comparatively small receptive fields [<100 mm;
(15)] and respond to light in essentially linear
fashion (16), but transmission to retinal gangli-
on cells may involve a degree of rectification
(17–19). Furthermore, bipolar cells come in two
major types: ON bipolars are excited by an in-
crease in light intensity and OFF bipolars by a
decrease. Individual ganglion cells can receive
inputs from both types (8, 20–24). To include this
structure of the inner retina into the model, we
replaced the single spatiotemporal filter by a set
of parallel filters that mimicked spatially local
ON and OFF bipolar cells (Fig. 3E). Transmis-
sion from bipolar to ganglion cells was approxi-
mated by a half-wave rectifying function (Fig.
3F). Under these conditions, all stimuli led to

Department of Molecular and Cellular Biology and Center
for Brain Science, Harvard University, 16 Divinity Avenue,
Cambridge, MA 02138, USA.

*Present address: Max Planck Institute of Neurobiology,
Am Klopferspitz 18, 82152 Martinsried, Germany.
†To whom correspondence should be addressed. E-mail:
meister@fas.harvard.edu

22 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org1108

REPORTS

 o
n 

F
eb

ru
ar

y 
22

, 2
00

8 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://www.sciencemag.org


excitatory activation of the ganglion cell (Fig.
3G). Moreover, the predicted timing of the first
spike agreed remarkably well with the observed
latency tuning curve (Fig. 3H) and outper-
formed alternative circuit schemes (fig. S6) for
virtually all cells with substantial latency tuning
(fig. S7).

Note that all the elements of this model are
well-known components of retinal circuitry. Closer
inspection reveals how the circuit accomplishes
latency tuning. First, the rectifying synapses en-
sure that every stimulus excites the ganglion cell:
any image change within the receptive field will
activate some set of bipolar cells that transmit
their excitation to the ganglion cell (18). The
lasting and synchronous activation of both ON

and OFF pathways by flashed gratings empha-
sizes their nonlinear summation and, thus, the
need for separate filters in themodel. By contrast,
earlier studies of ganglion cells (13) were based
on spatially homogeneous stimuli that only tran-
siently activate one pathway at a time and, there-
fore, allow for simpler models (14). Second, the
measuredON filters have slower kinetics than the
OFF filters (Fig. 3E and fig. S5), such that ON
stimuli affect ganglion cell spiking ~30 ms later
than OFF stimuli. This is consistent with prior
observations (23) and probably results from a
signal transduction delay at the synapse between
photoreceptors and ON bipolars (25, 26). Thus,
the proportion of light and dark stimulation with-
in the receptive field determines the relative

contribution of the ON and OFF pathways and
modulates the time of the first threshold crossing.

This hypothesis for latency coding relies in-
timately on the convergence of parallel neuronal
pathways with intrinsic kinetic differences. If
this picture is correct, removal of one of the
pathways should lead to a breakdown of latency
tuning. We therefore exposed the retina to 2-
amino-4-phosphono-butyrate, a metabotropic
glutamate receptor agonist that blocks neural
transmission to ON bipolar cells (26). The results
were as predicted: Fast OFF ganglion cells ceased
responding to about half of the stimuli (fig. S8),
consistent with a loss of all the ON filters of the
model as shown in Fig. 3F.

Although grating stimuli are convenient for
systematic investigations, they do not capture the
complex statistics of natural scenes.We thus brief-
ly flashed a photographic image onto the retina
(Fig. 4A). Across repeated presentations, the
image was shifted to many different locations. In
this way, spikes from a single ganglion cell could
be used to simulate a population of identical neu-
rons with different receptive field locations. Re-
sponses to the natural image resembled those to
the gratings. For fast OFF cells, almost all image
presentations elicited spike bursts that varied in
latency by about 40 ms (Fig. 4B), and this latency
was systematically related to the stimulus. Indeed,
by simply plotting the differential spike latencies
as a gray-scale code, we obtained a rather faithful
neural representation of the raw visual image (Fig.
4C). This demonstrates the high quality of the
latency information. Subsequent brain regions
could use this for local image computations; for
example, a neuron that detects spike coincidence
among multiple ganglion cells would be selective
for contour lines or edges in the image.

The corresponding neural image created from
spike counts (Fig. 4D) is more blurred and noisy,
and the highest values are observed near edges in
the stimulus. In the flat regions, the center-
surround antagonism of ganglion cell receptive
fields (fig. S1) reduces firing activity. But be-
cause the effect of the receptive-field surround is
delayed relative to the center (20), it does not
affect the first spike in a burst. In fact, latency and
spike count may serve to encode complementary
stimulus features, which could support a rapid
scene analysis with subsequent refinement (27).
Furthermore, in natural vision, the ongoing fixa-
tional eye movements after a saccade may well
affect the spike count throughout fixation, but
should have negligible effects on the timing of
the first spike.

Altogether, our results suggest that a popula-
tion code based on differential spike latencies can
be a powerful mechanism to rapidly transmit a
new visual scene. Rapid saccades are ubiquitous
in animal vision (1). In salamanders, they result
from turns of the head and constitute a vital part
of the approach to a prey (2). During a saccade,
many ganglion cells are strongly suppressed
(19, 28), such that the first spike after a saccade is
easily recognized. The differential latency of these

Fig. 1. Ganglion cell responses to flashed gratings with
different spatial phases. (A) Raster plots of spike responses
from four ganglion cells to several 150-ms presentations of
each of eight gratings. Time is measured from stimulus onset.
(Left) Schematic drawings of the eight stimuli with different
spatial phases. The circles show 1-SD contour lines of the
spatial receptive fields of the four cells, correspondingly from
left to right, in relation to the stimuli. (B) Tuning curves of the
elicited spike count. Here and in subsequent figures, all error

bars show the standard deviation across trials with the same stimulus. (C) Tuning curves of the first-spike
latency. “Fast OFF” and “biphasic OFF” cells typically showed strong tuning in the latency and only mild
tuning in spike count; despite their names, these cell types receive input from both ON and OFF pathways
(19). “Slow OFF” and “ON” cells, on the other hand, displayed good tuning in the spike count and often
did not respond with spikes to all stimuli. The relatively long latencies are typical for cold-blooded
animals. (D) Information about the stimulus identity contained in the spike count and in the latency,
respectively, for all recorded cells. For a subdivision of the data by ganglion cell type, see fig. S2.
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spikes encodes fine spatial detail (Figs. 1 and 4),
yet it is almost entirely invariant to the overall
stimulus contrast level (Fig. 2). Furthermore, it is
robust to retinal noise (Fig. 2), and it provides
information about the pattern in the shortest pos-
sible time, namely, with the very first spikes.

Many vertebrates have specific ganglion cells,
often multiple types, that combine inputs from
both ON and OFF pathways (20–23), as evi-
denced by their ON/OFF response characteristics
or by their dendritic morphology that connects to
both ON and OFF bipolar cells. These neurons

are candidate carriers of a latency code (Fig. 3).
Synapses in the early visual pathway are very
efficient, such that short spike bursts are reliably
transmitted from retina to cortex (29). Moreover,
certain neurons in visual cortex are exquisitely
sensitive to the coincidence of spikes on their

Fig. 2. (A to D) Encod-
ing by relative latencies
of pairs of ganglion cells.
(A) Latency tuning curves
for two simultaneously
recorded fast OFF cells.
(B) Scatter plot of la-
tencies (L1, L2) for the
two cells. The diagonally
elongated distributions of
the data show that L1 and
L2 were positively corre-
lated across trials with
the same stimulus (14).
(C) Tuning curve of the
latency difference L1 – L2.
(D) Information theoret-
ical analysis of latency
differences from simul-
taneously recorded cell
pairs. The information IDL
about the stimulus contained in the latency difference DL = L1 – L2 is
plotted against the information loss IDL – IDL shift that occurred when L2 was
shifted by one trial with respect to L1. (E to H) Contrast-invariant encoding
by pairs of ganglion cells. (E) Latency tuning curves for a fast OFF cell
whose responses were recorded for flashed gratings at different Michelson
contrast levels. (F) Latency tuning curves of a second, simultaneously

recorded fast OFF cell. (G) Tuning curves of the latency difference for the
two neurons. (H) Information about the stimulus pattern, carried by latency
differences whether the contrast level is known or not. All cell pairs that
were recorded at the four different contrast levels were analyzed. The data
points near the diagonal show that little information is lost by ignoring the
stimulus contrast.

Fig. 3. Modeling the response laten-
cies of retinal ganglion cells. (A) Stan-
dard framework for modeling ganglion
cell responses. The stimulus (left) is gray
illumination followed by a grating. This
is convolved with a spatiotemporal filter
(middle) representing the ganglion cell’s
receptive field (fig. S1). When the
resulting activation curve exceeds a pre-
set threshold, the first spike is fired (right).
(B) Activation curves computed for each
of the eight grating stimuli, by using
the measured spatiotemporal filter for a
sample fast OFF ganglion cell (first cell
in Fig. 1). (C) Predicted and measured
dependence of the latency on the stim-
ulus. The threshold is the only free pa-
rameter of the model and was optimized
from a c2 fit to the measured latency
tuning curve. Several stimuli did not
lead to positive activation and thus did
not predict spikes. (D) Retinal interneu-
ron pathways that motivate a revised
model. Each small subregion of the re-
ceptive field activates both ON and OFF
bipolar cells. The ganglion cell pools
inputs across subregions and from both
bipolar types. (E) Separation of the spatio-
temporal filter into spatial subunits and subsequently into ON andOFF pathway
contributions. [See (14) and fig. S5 for measurement of these contributions.]
(F) Multi-pathway model of the response: Each subregion of the stimulus is
passed through an ON filter and an OFF filter. The filter output is half-wave

rectified and then pooled with all other outputs to yield the activation curve. (G)
Activation curves computed for each of the eight grating stimuli, using themodel
in (F). Note that each stimulus produced excitation. (H) Measured latency tuning
curves and predictions of the model in (F), after optimization of the threshold.
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afferents (30), which is one possible readout
mechanism for a latency code. Cortical neurons
themselves carry substantial sensory information
in their response latencies (6, 7, 31). Thus, it is
conceivable that early aspects of sensory pro-
cessing operate on the basis of the classification
of spike latency patterns.
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Predicting Human Interactive Learning
by Regret-Driven Neural Networks
Davide Marchiori1 and Massimo Warglien2*

Much of human learning in a social context has an interactive nature: What an individual learns
is affected by what other individuals are learning at the same time. Games represent a widely
accepted paradigm for representing interactive decision-making. We explored the potential
value of neural networks for modeling and predicting human interactive learning in repeated
games. We found that even very simple learning networks, driven by regret-based feedback,
accurately predict observed human behavior in different experiments on 21 games with unique
equilibria in mixed strategies. Introducing regret in the feedback dramatically improved the
performance of the neural network. We show that regret-based models provide better
predictions of learning than established economic models.

The surge of interest in the neural bases of
economic behavior (1–3) prompts the
question of how well neural networks can

model human interactive decision-making (4).
This question implies two issues: the choice of the
network architecture and the selection of input
information to the network that has to be both
economically and neurophysiologicallymotivated.

Interactive learning differs from individual
learning in that, given n agents, each agent adapts
to behaviors that are modified by the concurrent
learning of the other n–1 agents. It has an obvious
relevance in economic contexts, but (more gen-
erally) much of human learning that occurs in
social contexts has an interactive nature. Exper-
imental game theory has provided a large set of

laboratory data on human interactive learning in
repeated games (5), often contradicting the pre-
dictions of standard game theory. The need for
models of interactive learning in games arises
from the difficulties of ordinary game-solution
concepts to explain both the trajectories and the
long-run stationary state of experimentally ob-
served human behavior in repeated games.
Games with unique equilibria in mixed strategies
are an especially interesting case, because Nash
equilibrium not only fails to approximate behav-
ior in early rounds but also is often a poor
predictor of the stable behavior emerging in the
long run.

Until now, twomainmodeling strategies have
been used with some success in trying to fit and
predict how humans learn in repeated games in a
laboratory setting. Onemodeling strategy extends
a classical paradigm of learning theory (i.e., rein-

Fig. 4. Responses of a fast OFF ganglion cell to a flashed natural image. (For results from other cell types,
see fig. S9.) (A) Photograph of a swimming salamander larva projected on the retina. The ellipse in the
upper right corner shows a sample 1-SD outline of a ganglion cell receptive field. In each of 1000
presentations, the image was shifted slightly, and the grid of dots marks the resulting centers of the
receptive field. Presentations were separated by gray illumination at the mean intensity of the photo-
graph. The image onset produced luminance changes at most locations. (B) Spike trains of the ganglion
cell for receptive-field locations along the column marked by the arrows in (A). (C) Gray-scale plot of the
differential spike latency on single-trial presentations at the locations marked with dots in (A). The
reference latency was chosen as the average value at all locations (10). (D) Corresponding gray-scale plot
of the spike counts.
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