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The response of a spiking neuron to a stimulus is often char-
acterized by its time-varying firing rate, estimated from a his-
togram of spike times. If the cell’s firing probability in each small
time interval depends only on this firing rate, one predicts a
highly variable response to repeated trials, whereas many neu-
rons show much greater fidelity. Furthermore, the neuronal
membrane is refractory immediately after a spike, so that the
firing probability depends not only on the stimulus but also on
the preceding spike train. To connect these observations, we
investigated the relationship between the refractory period of a
neuron and its firing precision. The light response of retinal
ganglion cells was modeled as probabilistic firing combined
with a refractory period: the instantaneous firing rate is the
product of a “free firing rate,” which depends only on the
stimulus, and a “recovery function,” which depends only on the

time since the last spike. This recovery function vanishes for an
absolute refractory period and then gradually increases to unity.
In simulations, longer refractory periods were found to make
the response more reproducible, eventually matching the pre-
cision of measured spike trains. Refractoriness, although often
thought to limit the performance of neurons, may in fact benefit
neuronal reliability. The underlying free firing rate derived by
allowing for the refractory period often exceeded the observed
firing rate by an order of magnitude and was found to convey
information about the stimulus over a much wider dynamic
range. Thus, the free firing rate may be the preferred variable for
describing the response of a spiking neuron.
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There has been considerable speculation about the code used by
spiking neurons to transmit information (Ferster and Spruston,
1995; Sejnowski, 1995; Stevens and Zador, 1995). The spectrum of
proposed theories ranges from the “rate code,” in which the firing
rates of many neurons are averaged to obtain a reliable signal
(Shadlen and Newsome, 1994), to “time codes,” in which the
precise time relations of spikes from many neurons are meaningful
(Abeles, 1991; Singer and Gray, 1995; Softky, 1995; Meister, 1996).
A key factor in distinguishing among these theories is the temporal
precision of individual action potentials. Thus, it is important both
to measure this precision experimentally and to describe neuronal
spike trains by a formalism consistent with such measurements.

The response of neurons to repeated identical stimuli is gen-
erally variable. To account for this trial-to-trial variability, such
spike trains are often characterized by the instantaneous proba-
bility for generating an action potential. In this model of spike
generation, termed the “inhomogeneous Poisson process” (for
review, see Rieke et al., 1997), the firing probability at any instant
depends only on the stimulus, not on the history of the spike train
itself. Thus the variability of the response is determined by
Poisson counting statistics; in particular, the variance in the spike
count over any time interval is equal to the mean spike count
(Rieke et al., 1997).

In recent work, we investigated the reliability of visual re-
sponses from retinal ganglion cells (Berry et al., 1997) and found
far greater precision: the variance of the spike count in short time

windows was much smaller than the mean. A study of the H1
interneuron in the fly visual system (de Ruyter van Steveninck et
al., 1997) reached similar conclusions. In both cases, a rapidly
varying stimulus caused the neurons to make sharp transitions
between silence and nearly maximal firing. In addition, the spik-
ing probability depended strongly on the history of spike times, as
seen by the complete absence of spike intervals shorter than an
absolute refractory period. When a neuron is firing near its
maximum rate, this refractoriness causes the spike train to be-
come more regular than a Poisson process with the same firing
rate. Thus, we asked whether the refractory period plays an
important role in setting the response precision of retinal gan-
glion cells.

Here, we compare experimental results with two different mod-
els of spike generation that modify the Poisson process in a simple
way to include refractoriness. All the effects of spiking history are
summarized by a recovery function, which describes how the neu-
ron recovers its ability to fire after generating an action potential
(Gray, 1967; Gaumond et al., 1982). Given a choice of recovery
function, the measured spike train can be used to estimate a free
firing rate, namely the firing rate of the neuron when it is not under
the influence of refractoriness (Johnson and Swami, 1983; Miller,
1985). We studied stochastic models of spike generation using
different forms of this recovery function and compared their pre-
dictions with experimentally measured light responses. This two-
component formalism of the spiking process was highly successful
at matching the observed response precision.

MATERIALS AND METHODS
Recording and stimulation. Experiments were performed on the isolated
retina of the larval tiger salamander, superfused with oxygenated Ring-
er’s solution. Action potentials from retinal ganglion cells were recorded
extracellularly with a multi-electrode array, and their spike times were
measured relative to the beginning of each stimulus repeat (Meister et
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al., 1994; Smirnakis et al., 1997). We denote the spike train by {tij} where
tij is the time of the i th spike on the j th stimulus trial. Spatially uniform
white light was projected from a computer monitor onto the photorecep-
tor layer. The intensity I(t) was flickered by choosing a new value at
random from a Gaussian distribution (mean #I, SD dI ) every 30 msec. The
mean light level (#I 5 4 z 10 23 W/m 2) corresponded to photopic vision,
because the spectral sensitivity of ganglion cells equalled that of the red
cone photoreceptor (Meister et al., 1994). Contrast C is defined here as
the SD of the light intensity divided by the mean, C 5 dI/#I. Most
recordings used a contrast of C 5 35% and extended over either 60
repeats of a 60 sec segment of random flicker or 100 repeats of a 20 sec
segment.

The observed firing rate. For each ganglion cell, a peristimulus time
histogram (PSTH) was obtained by histogramming the spike times tij
from all trials. Spike counts in the PSTH were divided by the observation
time in each bin to yield the observed firing rate, namely the number of
spikes produced per unit of time. Formally, the observed firing rate over
the time interval [tA ,tB] is:

r@tA , tB# 5
*tA

tB r~t!dt

M~tB 2 tA!
(1)

where M 5 number of stimulus repeats, r(t) 5 (ijd(t 2 tij ), and
d(t) 5 Dirac delta function.

The observed firing rate was calculated using time bins of 2 msec or
0.25 msec, depending on the application. For notational simplicity, we
will denote it as r(t), keeping in mind that it is not a continuous function
of time but is evaluated at a discrete set of time points. The same applies
to all other quantities evaluated at discrete times.

Firing events. Clear firing events could be recognized in r (t) as a
contiguous period of firing bounded by periods of complete silence (see
Fig. 1). However, strong peaks in r (t) were not always separated by zero
firing. To provide a consistent demarcation of firing events, we drew the
boundaries of a firing event at minima v in r (t) that were significantly
lower than neighboring maxima p1 and p2 , such that Îp1 p2 /v $ 1.5 with
95% confidence. This method for identifying firing events has proven
robust to changes in the parameters of the algorithm (Berry et al., 1997).
With these boundaries defined, each spike in each trial was assigned to
exactly one firing event.

After firing events were demarcated in this way, we characterized each
event by two numbers: the time of the first spike and the number of spikes
in the event. The distribution across trials of these two numbers reveals
the reproducibility of event timing and spike count. For each firing event
k, we computed the average time Tk of the first spike and its SD dTk
across trials, which measures the temporal jitter of the first spike. Simi-
larly, we computed the average number Nk of spikes in the event and its
variance dNk

2 across trials, which measures the precision of spike number.
In trials that contained zero spikes for event k, no contribution was made
to Tk or, while a value of zero was included in the calculation of and dN k

2.

RESULTS
The spike trains of retinal ganglion cells contain all the informa-
tion the brain receives about the visual scene. The natural envi-
ronment presents the retina with a rich variety of dynamic pat-
terns of light. Because the response precision of a ganglion cell
may not be the same for all stimulus patterns, it is important to
select an experimental stimulus ensemble that provides a broad
range of different stimuli. On the other hand, each particular
stimulus must be repeated many times to measure the precision of
the response. With these constraints in mind, we chose the stim-
ulus ensemble provided by spatially uniform random flicker,
which contains a wide variety of temporal intensity patterns (see
Materials and Methods).

Previous work (Berry et al., 1997) has shown that under con-
ditions of random flicker stimulation, retinal ganglion cells re-
spond with discrete periods of firing separated by intervals of
complete silence. These firing “events” are tightly locked to the
stimulus. The time of the first spike in an event jitters very little
from trial to trial; the number of spikes in the event is also very
reproducible across trials. Such firing events can be identified

clearly in several different ganglion cell types. They are promi-
nent also under stimulation with spatially modulated “checker-
board” flicker. Similar results were found in the rabbit retina. In
the present work, we build on the previous study by connecting
the observed precision of firing events to the refractory properties
of ganglion cells.

Firing events
Figure 1 shows firing events in the response of a salamander
ganglion cell to random flicker stimulation. There were extensive
periods in which no spikes were seen in 60 repeated trials, serving
to clearly separate neighboring firing events. During such periods
of firing, the firing rate r(t) rose sharply from zero to a maximum
value (;200 Hz) and then fell sharply back to zero. In general,
the firing events were brief bursts and could contain more than
one spike (Fig. 1B).

To assess the timing precision of such a firing event, we mea-
sured the trial-to-trial jitter dT of the time of the first spike. This
temporal jitter was small, typically ranging from ;1 to 10 msec
(Fig. 2A). For a given cell, dT varied somewhat among different
firing events, and firing events containing more spikes generally
showed greater timing precision (Fig. 2A). To characterize the
timing precision of a cell with a single number, we computed the
median temporal jitter t over all events, which was 3.0 msec for
the cell in Figure 2A.

The spike count in a firing event was also remarkably repro-
ducible. Its trial-to-trial variance dN 2 was generally less than 1
and often approached the arithmetic lower bound imposed by
the fact that individual trials necessarily produce integer spike
counts (Fig. 2 B). The ratio of the variance dN 2 to the mean
spike count N has a value of dN 2/N 5 1 for a Poisson process.
By contrast, the observed variance-to-mean ratio fell below 1
for almost all the firing events and dropped below 0.1 for the
largest events (Fig. 2 B). The fact that dN 2 ,, N indicates that
ganglion cell spike trains cannot be characterized completely
by an instantaneous firing rate (Berry et al., 1997). To assess
the spike count precision of a cell with a single number, we

Figure 1. Firing events in the response of a salamander retinal ganglion
cell to random flicker stimulation at 35% contrast. A, The stimulus
intensity in units of the mean during a 0.6 sec interval of the 60 sec
stimulus repeat. B, Spike raster for 60 repeated trials of the stimulus. C,
The observed firing rate r ( t), computed by histogramming spike times in
2 msec bins.
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computed the average variance over events and divided by
the average spike count: F 5 ^dN 2&/^N&. This quantity, also
known as the Fano factor, was F 5 0.25 for the ganglion cell in
Figure 2B.

Stochastic models of the spike train

We seek an improved quantitative description of the statistics of
neural firing. Toward this end, we will consider three stochastic
models of the ganglion cell spike train: (1) an inhomogeneous
Poisson process; (2) an inhomogeneous Poisson process with

dead time; and (3) an inhomogeneous Poisson process with a
renewal function. The first model is a popular approximation of
spike statistics, whereas the other two models improve on the first
by incorporating a refractory period. By comparing different
forms of refractoriness, one can understand more readily how it
affects neural precision. For each model, we show how the pa-
rameters are estimated to reproduce correctly the observed firing
rate r(t) (see Materials and Methods). Then we discuss how the
model is used to generate simulated spike trains, the statistics of
which can be compared with the measured responses.

The inhomogeneous Poisson process
We start by reviewing a very simple stochastic model of the spike
train: the inhomogeneous Poisson process. Here, the probability
of finding a spike in a small interval around time t is simply
proportional to the instantaneous firing rate l(t) at that time:

p~spike in @t, t 1 dt#! 5 l~t!dt (2)

In general, this firing rate varies in time, under control of the
external stimulus.

Because earlier spikes do not affect the firing probability, all
spikes are produced independently. Thus the probability of ob-
taining a particular spike train {t1 , t2 ,. . . , tn} is proportional to the
product of the individual firing probabilities:

p~$t1 , t2 , . . . , tn%! } l~t1!l~t2!· · ·l~tn! (3)

Under these conditions, it can be shown (for review, see Rieke et
al., 1997) that the number of spikes n observed in a time interval
[tA, tB] is distributed according to the Poisson distribution:

P~n! 5 e2N
Nn

n!
(4)

where:

N 5 E tB

tA

l~t!dt (5)

is the average spike count. In particular, one finds from Equation
4 that the trial-to-trial variance in the spike count over any given
time interval is equal to the mean: dN 2 5 N.

For this model to match the observed firing rate r(t), one
should choose l(t) such that the expected number of spikes in
each time bin matches the observed number of spikes. It follows
from Equations 1 and 5 that this choice is simply:

l~t! 5 r~t! (6)

Given the firing rate l(t), one can use this model to generate a
sequence of spikes. If there is a spike at time ti , then the proba-
bility of observing no spikes until time ti11 is:

exp S2Eti11

ti

l(t)dtD
as can be derived from Equation 2. Thus, the next spike time
ti11 is found by selecting a random number ai11 uniformly dis-

Figure 2. The precision of timing and spike number in firing events
from a single ganglion cell. During an 800 sec flicker segment repeated
30 times, 1663 firing events were identified. A, The temporal jitter
dT of a firing event as a function of its mean spike count N (dots).
The median temporal jitter t is shown by the dashed line. B, The
variance-to-mean ratio dN 2/N of the spike count in a firing event as a
function of its mean spike count N (dots), along with the value
expected from Poisson statistics (thick line), and the Fano factor F
(dashed line). The thin line shows the lower bound imposed by the spike
count being an integer on individual trials. Note that the data points
trace out a series of arches on and above the lower bound that are,
successively, the next lowest possible variance-to-mean ratios.
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tributed between 0 and 1, and numerically solving for ti11 the
equation:

2ln ai11 5 E ti11

ti

l~t!dt (7)

To provide a small integration time step in Equation 7, the firing
rate was sampled every 0.25 msec.

Including an absolute refractory period
It is well known that the firing probability of a neuron does
depend on the history of previous spikes. In particular, there is
little firing during a short period immediately after an action
potential. This refractoriness results from the intrinsic dynamics
of the active membrane conductances that are responsible for
spike generation (Hodgkin and Huxley, 1952).

The simplest method of incorporating a refractory period into
a stochastic model of spike generation (Gray, 1967; Gaumond et
al., 1982; Johnson and Swami, 1983) assumes that the firing rate
l(t,{tij}) of a neuron is the product of a free firing rate q(t) and a
recovery function w(t 2 tlast ) that reduces the firing rate imme-
diately after a spike:

l~t, $tij%! 5 q~t!w~t 2 tlast! (8)

The free firing rate q(t) is a function of the stimulus, whereas the
recovery function w(t 2 tlast ) depends only on the time since the
last action potential at tlast. It varies from 0 at short times to 1 at
long times.

We begin by considering an absolute refractory period: a
neuron that has fired an action potential is unable to produce
another for a period of time m, regardless of the strength of the
stimulus. After this dead time, its firing rate returns immedi-
ately to the value in absence of refractoriness. Formally, the
recovery function is:

wm~t! 5 H0, if 0 # t # m
1, otherwise (9)

5 1 2 Q~t!Q~m 2 t!

where

Q~t! 5 H0, if t , 0
1, otherwise

is the Heaviside step function.
Given a choice of dead time, we would like to estimate q(t)

from the spike trains so that this spiking mechanism repro-
duces the observed firing rate r(t). At time t during the stim-
ulus repeat, the model cell fires at the instantaneous rate q(t),
but only if t does not fall into the dead time of the previous
spike. The probability that this happens can be estimated
directly from the measured spike trains, as illustrated in Figure
3. On a single trial j, define:

Wj~t! 5 H0, if t falls within a refractory
period of the previous spike

1, otherwise
(10)

which can be expressed formally as:

Wj~t! 5 O
i

w~t 2 ti, j!Q~t 2 ti, j!Q~ti11, j 2 t! (11)

Then the probability that time t is available for free firing is given
by the average of Wj(t) over all trials:

W~t! 5
1
M O

j
Wj~t! (12)

The observed firing rate of the model cell equals the free firing
rate q(t) multiplied by the probability W(t) that free firing is
possible at time t. Equating this with the observed firing rate r(t)
leads to:

q~t! 5
r~t!

W~t!
(13)

The general form of Equation 13 was introduced by Johnson and
Swami (1983), and was later shown by Miller (1985) to be the
maximum likelihood estimate for q(t). An alternative method
estimates the free firing rate directly from the PSTH using an
iterative procedure (Jones et al., 1985; Bi, 1989).

The fraction W(t) depends on the choice of refractory period,
as seen in Figure 3. Thus, the estimate of the free firing rate will
be different for each choice of m. To make this dependence
explicit, we denote the free firing rate by qm(t). In particular, when
there is no refractory period, then W(t) 5 1. Thus the nonrefrac-
tory model defined by Equation 6 is seen as a special case of
Equation 13: l(t)5qm50(t). For a non-zero dead time m, W(t) # 1,
and the free firing rate obeys the inequality q(t) $ r(t). If the
refractory period m is chosen too large, it may exceed some of the
interspike intervals in the data. This can lead to a complication in
estimating qm(t): if a spike was observed at time t, but this time
lies within m of the preceding spike on every trial, then W(t) 5 0
and qm(t) 5 `. To avoid the divergence, we imposed a maximum
bound on the free firing rate qm

max(t) 5 1000 r(t). As described
below, models in which the chosen refractory period m is too large
eventually fail to account for the observed firing rate r(t).

Given the free firing rate q(t) and the recovery function w(t),

Figure 3. Schematic illustration of the derivation of W( t), the probability
of free firing. On each trial j, Wj(t) (solid gray) has a value of zero during
the refractory period following a spike (vertical lines) and one elsewhere.
This function is averaged over all trials (bottom), to yield W( t), the
fraction of trials during which free firing was possible at time t.
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one can again generate simulated spike trains from a set of
random numbers {ai}, uniformly distributed between 0 and 1. If
there is a spike at time ti , then the next spike time ti11 is found by
numerically integrating:

2ln ai11 5 E ti11

ti

q~t!w~t 2 ti!dt (14)

which follows by substituting the firing rate l(t,{tij})from Equa-
tion 8 into the spike-generating rule of Equation 7. Again, for
both q(t) and w(t) we used an integration time step of 0.25 msec.
For an absolute refractory period, Equation 14 simplifies to:

2ln ai11 5 E ti11

ti1m

qm~t!dt (15)

Including a relative refractory period
In practice, the firing probability of a neuron does not recover
instantaneously after the dead time has expired. In a more realistic
model of spike generation, each action potential is followed by a
recovery period, during which the firing rate is gradually restored
to its free value (Kuffler et al., 1957). This amounts to choosing a
recovery function w(t) that approaches 1 gradually, rather than in
the step-like manner considered above. A good choice for w(t) can
be derived directly from the observed spike trains, as follows.

Assume that the neuron behaves according to Equation 8 and
that its free firing rate is constant, q(t) 5 q. Then the time interval
D between successive spikes is distributed according to:

p~D! 5 expS2E
0

D

qw~D9!dD9D qw~D! (16)

For long interspike intervals, where w(D) ' 1, one predicts an
exponential dependence p(D) } exp(2qD), whereas the fre-
quency of short intervals, where w(D) , 1, should fall below this
exponential curve. The first term in Equation 16 is the probability
that there is no spike in a time interval D, equal to:
1 2 *0

D p (D9)d D9. Thus, one can express the recovery function in
terms of the interspike-interval distribution:

w~D! 5
1
q

p~D!

1 2 *0
D p~D9!dD9

(17)

Figure 4A shows the distribution p(D) of interspike intervals for
a ganglion cell under random flicker. For long intervals between
5 and 10 msec, the distribution drops exponentially, as expected
for a Poisson process with a constant firing rate. The complete
absence of very short intervals indicates that absolute refractori-
ness lasts for 2 msec. The relative paucity of intervals between 2
and 5 msec results from a relative refractory period, during which
the ganglion cell is able to fire an action potential, but does so
with reduced likelihood. To determine the recovery function w(t)
that governs this period, we first estimated q as the rate of the
exponential decay at long times (Fig. 4A) and then calculated w(t)
for intermediate times from Equation 17. This function is shown
in Figure 4B. Note that w(t) is negligible out to 2.5 msec and then
rises monotonically between 2.5 and 5 msec.

The derivation of Equation 17 assumed a constant free firing
rate, whereas the observed firing rate was clearly not constant,
instead showing rapid modulations (Fig. 1). However, the shape

of the interspike-interval distribution at short times is dominated
by the rapid firing during firing events. The peak firing rates
observed did not vary much from event to event, typically within
a factor of 2 for events having at least one spike per trial.
Consequently, deriving the recovery function in this way may still
provide a good estimate of how spiking recovers. This was con-
firmed by the practical success of this model, as described below.

Given this choice of w(t), we derived the free firing rate by the
general procedure described above. First, the effective probability
of free firing W(t) was computed from w(t) and the spike trains
(Eq. 11 and 12). Then the observed firing rate was divided by the
probability of free firing to yield the free firing rate q(t) (Eq. 13).
Because w(t) is derived directly from the interspike-interval dis-
tribution, its absolute refractory period extends only over a du-
ration for which there are no interspike intervals in the observed
spike trains; thus these calculations were never hampered by the
divergence of q(t) discussed earlier. To identify the recovery
function and free firing rate associated with this stochastic model
incorporating the most realistic refractory period, we will denote
them as wm(t) and qm(t), respectively. This model again produces
simulated spike trains from random numbers by the general
procedure of Equation 14.

Performance of the models
In the following section, we will test the predictions of the models
developed above against the observed light response of retinal
ganglion cells. Simulated spike trains were produced with the

Figure 4. I llustration of the method for determining the recovery
function wm(t) from the spike train of a ganglion cell. A, The histogram
of interspike intervals D (diamonds) is fit over the range D 5 5–10 msec
with an exponential curve P(D) } e 2qD (solid line), yielding a decay rate
of q 5 780 Hz. B, This value of q serves to compute the recovery function
wm(t) using Equation 17. For intervals .10 msec, P(D) was approximated
by the exponential extrapolation shown in A.

2204 J. Neurosci., March 15, 1998, 18(6):2200–2211 Berry and Meister • Refractoriness and Neural Precision



same number of repeated stimulus trials as during experiments
and analyzed in the same manner (see Materials and Methods).
The firing rate r(t) was computed from the PSTH, firing events
were identified, and both the temporal jitter of the first spike of an
event dT and the variance in the spike count during the event dN2

were calculated. To further test the models, four other statistics of
the simulated spike trains, described below, were compared with
the corresponding values for the observed spike trains. Quantities
derived from simulations will be denoted by subscripts, for exam-
ple rm(t) for the firing rate of the model with absolute refractory
period of length m, and rm(t) for the model with a relative
refractory period.

Spike train statistics
Two statistics were used to assess the accuracy of the firing rate
produced by the model rm(t). The simulated firing rate averaged
over the entire stimulus segment r#m was compared with the
observed mean firing rate r#. To test how well the model captured
the fast modulations in the observed rate, we calculated the
mean-squared error of the predicted rate normalized to the total
variance in the observed rate:

Em 5
*@rm~t! 2 r~t!#2dt

*@r~t! 2 r#2dt
(18)

For this purpose, r(t) was evaluated with a bin size of 2 msec, less
than the temporal jitter t for a typical ganglion cell, and thus fine
enough to capture the steep rising and falling edges of firing
events. Because the response r(t) varies somewhat from trial to
trial, it is of interest to see how the quality of the model’s fit
compares with this intrinsic variability. The corresponding bench-
mark of the response variability is given by:

E0 5
~1/M!*dr2~t!dt
*@r~t! 2 r#2dt

(19)

where dr(t)/ÎM 5 standard error of r(t) across trials.
Similarly, the random error associated with the model’s predic-

tion is measured as Em
0 , obtained by replacing rm for r in Equation

19. In particular, when Em 5 Em
0 , then the model agrees with the

observed firing rate to within the uncertainty in the model’s firing
rate, which is limited by the finite number of trials.

The event statistics dT and dN2 both measure the trial-to-trial
reproducibility of spike trains, but only in very specific aspects.
Thus, we also computed a much more general measure of vari-
ability, the so-called “noise entropy” of the spike trains (de
Ruyter van Steveninck et al., 1997; Strong et al., 1997). In brief,
the spike train was evaluated in 2 msec bins, and thus converted
into a string of ones and zeroes marking the presence or absence
of a spike. This string was evaluated one “word” at a time, with
word lengths ranging up to 25 bins. At a given time t during the
stimulus segment, the M trials yielded M words, each providing
the local spike pattern during one trial. The variability of these
spike patterns was measured by the entropy of the set of words
(Shannon and Weaver, 1963). By averaging this measure over all
times t, and dividing by the duration of a word, one obtains the
rate of noise entropy per unit time, S noise. Using 60 or 100 trials
(see Materials and Methods), the variety of words could be
sampled well for words up to 50 msec long. As a result, this
measure captures the variety of spike patterns within a firing
event.

The noise entropy measures how much the local spike pattern
varies from trial to trial. It is important to compare this variability

introduced by neural noise to the overall variation in spiking patterns
elicited by the stimulus. Therefore, we also computed the total
entropy of the spike train, S total. This is derived in a similar manner
from the set of all words encountered across times throughout the
stimulus segment. Finally, the difference between the total entropy
and the noise entropy, I 5 S total 2 Snoise, represents the information
conveyed by the spike train about the visual stimulus (Strong et al.,
1997). This can be seen as follows: without knowledge of the stim-
ulus, the uncertainty about what spike pattern the cell might produce
in the next 50 msec is equal to the total entropy Stotal. If the stimulus
is known, this uncertainty is reduced to the noise entropy Snoise. The
difference is equal to the information gained about the spike train
given the stimulus, which by symmetry is equal to the information
about the stimulus gained from the spike train.

Predictions from an absolute refractory period
To gain a basic understanding of how refractoriness affects re-
sponse precision, we first analyzed the effects of an absolute
refractory period. We varied the absolute refractory period m
from 0 to 6 ms, and analyzed how the simulated spike trains
produced by the model changed. Figure 5 shows the results for a
single representative retinal ganglion cell. The simulated average
firing rate r#m matched the actual firing rate of the neuron very well
up to refractory periods of m ' 4 msec (Fig. 5A). For larger values
of the absolute refractory period, many interspike intervals in the
responses of the cell are shorter than m. In those cases, the model
cannot match the firing rate of the cell, and thus the predicted
rate drops, although the discrepancy at m 5 6 msec is still only
10%. Figure 5B compares the mean-squared error Em of the
model with the uncertainty Em

0 in its predicted firing rate. For
refractory periods in the range to msec, the mean-squared error
Em comes very close to Em

0 and also to the uncertainty E 0 in the
observed firing rate of the neuron. This suggests that the model
matches the time course of r(t) about as well as can be expected
from the finite number of stimulus trials; no systematic deviations
from the measured firing rate can be resolved in this regime.
Above m 5 4 msec, the mean-squared error rises, because the
predicted firing rate is systematically too low, as discussed above.
Below m 5 1 msec, the mean-squared error Em also rises, al-
though it still agrees with the value Em

0 expected from the trial-
to-trial variation. This occurs because the variability of a nonre-
fractory spike train (m 5 0) is greater than that of the real neuron.

Although the mean firing rate was approximately constant for
refractory periods up to 4 msec, the precision changed dramati-
cally. Figure 5C shows that the Fano factor Fm varies from the
expected value of 1 for no refractory period to below 0.2 for the
largest refractory period. This happens because refractoriness
leads to a regular spacing of spikes during periods of rapid firing,
and this reduces the variability in the number of spikes generated
during an event. The spike number precision of the model
matched the observed value of F 5 0.25 at a refractory period of
m 5 4.5 msec. The temporal jitter tm also decreased as refracto-
riness was added (Fig. 5D), although the effect was somewhat
smaller. This sharpening of temporal precision occurs because
the free firing rate qm(t) rises more steeply than r(t) (see Fig. 8),
so that the first spike of an event occurs over a narrower range of
times. The model’s timing precision matched that of the neuron
at m 5 2.5 msec and showed a 10% discrepancy at m 5 4 msec.

The improved response precision from an absolute refractory
period resulted in higher information transmission rates. The
noise entropy Snoise remained constant until m 5 2 msec, but then
decreased sharply (Fig. 5E). Thus, refractoriness significantly
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reduced the variety of different spike patterns produced during a
given firing event. The total entropy S total also decreased, but by
a smaller amount, because most of the variety of spiking patterns
across events is related, in fact, to variety in the stimulus. Con-
sequently, the visual information rate per spike (Sm

total 2 Sm
noise)/ r#m

increased by ;30% as m ranged from 0 to 6 msec (Fig. 5F). Both
the noise entropy and the information rate of the model matched
the real values for refractory periods of m 5 4 msec, and the same
held to good approximation for the other comparisons tested
here. Therefore, a probabilistic spike generator with an absolute
refractory period can reproduce many statistics of these ganglion
cell spike trains.

Predictions from a relative refractory period
The most evolved model that incorporates a relative refractory
period with a smooth recovery function wm(t) was tested in a
similar manner, but the results will be elaborated in greater detail.
For each cell, wm(t) and qm(t) were determined from the re-
sponses as described above; recall that this entails no free param-
eters. Then the statistics of simulated spike trains were compared
with those of the actual response.

Figure 6 compares the precision of firing events simulated by
the model with those in the real responses of a single ganglion
cell. The temporal jitter dTm matches the real dT rather well.
There may be a barely detectable downward bias for the simu-
lated jitter dTm. Similarly, the variance dN2 in the spike count

during events is matched by the model’s prediction dNm
2 over a

wide range of values.
To better assess the validity of this model, we studied its

performance on a population of 42 salamander ganglion cells in
three retinae. The average firing rate produced by the model was
very close to the observed value: the discrepancy between pre-
dicted and real firing rates Pr#m 2 r#P/ r# was 1.6% on average
over the population of cells. The mean-squared error Em of the
predicted firing rate modulation again came very close to the
intrinsic uncertainty E0 in the response of the cell: the average
ratio was Em /E0 5 1.1. Thus, the model captures the time course
of the firing rate as well as possible, given the finite number of
trials.

For each cell, the precision of firing events was again measured
by the Fano factor F and the temporal jitter t. Figure 7A dem-
onstrates that the Fano factor Fm predicted from the model
agrees very well with the observed number precision F for almost
all cells. By contrast, the nonrefractory spike generator always
produces a Fano factor Fm50 near unity, as expected, and in stark
disagreement with the real neurons. Figure 7B shows a similar
comparison for the temporal jitter of firing events. Here, one
finds that both a relative refractory period and the simple non-
refractory model show close agreement with the measured tem-
poral jitter, with a slight negative bias using the relative refractory
period and a slight positive bias for the nonrefractory model. This

Figure 5. Comparison of the model with an absolute refractory period to observed results from a single representative ganglion cell. Six statistics of
the spike trains produced by the model are plotted as a function of the absolute refractory period m. The value of each statistic was averaged over 10
sets of simulated spike trains, and error bars denote 6 1 SD. In each panel, the real value from the neuron is shown by a dashed line. A, The average
firing rate r#m; B, the mean-squared error Em (solid symbols) and the uncertainty Em

0 (open symbols) in the simulated firing rate, with the corresponding
uncertainty E 0 in the measured rate (dashed line); C, the Fano factor Fm; D, the temporal jitter tm; E, the noise entropy per unit time S m

noise; F, the
information per spike S m

total 2 S m
noise)/ r#m.
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similarity is expected, because the timing precision is derived
from the first spike of an event, which is least affected by
refractoriness.

The model with a relative refractory period also matched the
variety of spiking patterns as measured by the spike train entropy.
The total entropy Sm

total predicted using a relative refractory
period was similar to the real value S total: the discrepancy was
PSm

total 2 S totalP/ S total 5 2.9% averaged over the population.
Similarly, the noise entropy was predicted very well with a relative
refractory period (Fig. 7C). By contrast, the nonrefractory model
produced a large discrepancy between predicted and observed
noise entropy, ranging up to 5 bits/sec. In conclusion, a spike
generator that incorporates a relative refractory period can very
closely reproduce many statistics of real spike trains, whereas a
nonrefractory model clearly fails.

The free firing rate
In this model of the spike train, the free firing rate depends only on
the external stimulus, whereas the observed firing rate is separated

from the stimulus by an additional, history-dependent nonlinearity.
As a result, the free firing rate may be a more fundamental
response measure than the observed firing rate. In addition, a
refractory period causes the observed rate to saturate whereas the
free rate is not so constrained. It is therefore conceivable that the
free firing rate can distinguish gradations in the visual stimulus that
are lost in the observed rate. Motivated by these ideas, we studied
the behavior of the free firing rate of retinal ganglion cells under
random flicker stimulation. The free firing rate was estimated using
the model with a relative refractory period, which emerged from

Figure 6. Comparison of the model with a relative refractory period to
observed results from a single representative ganglion cell. A, The pre-
dicted temporal jitter dTm plotted as a function of the observed value dT
for 213 firing events (dots). B, The predicted spike number variance dNm

2

plotted as a function of the observed value dN 2 (dots). In each panel, the
identity relation is shown as a dashed line.

Figure 7. Performance of the model with a relative refractory period
and the nonrefractory model for a population of 42 ganglion cells from
three retinae. In each panel, a statistic derived from simulated spike trains
is plotted against the observed value from the same cell; the identity
relation is shown as a dashed line. A, The Fano factor Fm (open circles) and
Fm50 (solid squares) as a function of F. B, The temporal jitter tm (open
circles) and tm50 (solid squares) as a function of t. C, The discrepancy in
the noise entropy DS m

noise 5 S m
noise 2 S noise (open circles) and DS m50

noise 5
S m50

noise 2 S noise (solid squares) as a function of S noise.
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the analysis presented above as the most realistic implementation
of the refractory properties of a ganglion cell.

Comparison with the observed firing rate
Figure 8 compares the free firing rate qm(t) with the observed
firing rate r(t) for a typical firing event. The observed rate rises
sharply from zero to its maximum of ;300 Hz and then exhibits
several peaks (Fig. 8A). The simulated firing rate rm(t) closely
follows these peaks. Figure 8B illustrates the free firing rate qm(t)
on the same scale. At the beginning of a firing event, when
refractoriness is negligible, qm(t) is equal to r(t), but it becomes
much larger after several spikes have occurred (Gaumond et al.,
1983), ranging up to ;3000 Hz in this case. As a result, the
waveform of is even narrower than that of r(t). Furthermore, qm(t)
is smoother than r(t), because the ripples introduced by refracto-
riness are largely removed. Again, this suggests that qm(t) is more
closely related to the excitatory input that this neuron receives.

Figure 8C is a scatter plot of the values of r(t) against values
of qm(t) at the corresponding time throughout the entire stimu-
lus period. Notice that they are roughly equal at low firing rates
(q ; 10 Hz), but that r saturates at its maximum of ;300 Hz
whereas q still increases. The general shape of this relationship
can be understood as a simple consequence of refractoriness: if
q(t) were constant and there were an absolute refractory period of
m, then r would reach a steady-state value of r 5 q/(1 1 qm). This
function provides an upper envelope to the scatter plot in Figure
8C with m chosen as 1.5 msec, close to the absolute refractory
period of the real data. Matching the middle of the data cloud is
a similar curve using m 5 3.5 msec, roughly the value that best
reproduced the spike train statistics.

The free firing rate qm(t) still varies by more than an order of
magnitude under conditions where the observed rate r(t) has
already saturated (Fig. 8C). However, one may ask whether this
variation is systematic or is instead introduced by noise in the
algorithm that estimates qm(t). After all, the free firing rate is
given by an expression (Eq. 13) with a denominator that is close
to zero for large values of q. To examine this concern, we tested
whether these variations in the free firing rate are driven system-
atically by the light stimulus.

The light response of the free firing rate
For concreteness, we will assume that the ganglion cell firing rate
r(t) depends on the stimulus intensity with what is called a
“Wiener cascade” or “LN model” (Hunter and Korenberg, 1986):

r~t! 5 f~Z~t!! (20)

where

Z~t! 5 E ~I~t 1 t9! 2 I! L~t9!dt9 (21)

Here, the stimulus I(t) is first convolved with a linear filter L(t),
and the result Z(t) is transformed at each point in time by a
nonlinear function f(Z). This simple LN model has been used
with some success in previous analyses of visual responses
(Korenberg et al., 1989; Mancini et al., 1990; Sakai et al., 1995).
For a mechanistic picture, one could interpret L(t) as a temporal
filter implemented by retinal circuitry. The filtered stimulus Z(t)
can be thought of as the effective input to the ganglion cell, and
the function f(Z) transforms this input into a firing rate. Of
course, the following analysis does not depend on this interpre-
tation, nor does it claim that the LN description is a complete
account of the light response of the ganglion cells.

The parameters of the LN model were deduced from the
ganglion cell spike train as follows. First, the linear filter L(t) was
obtained by reverse correlation of r(t) to the Gaussian stimulus
I(t) (Hunter and Korenberg, 1986):

L~t! 5
*~I~t9 1 t! 2 I!r~t9!dt9

*r~t9!dt9
(22)

Then, the effective input function Z(t) was computed from
Equation 21. Finally, the transform f( Z) was found by plotting
the measured firing rate r(t) against the effective input Z(t).
The same analysis was applied to derive the LN relationship
that links the free firing rate qm(t) to the stimulus. Obviously,
this yielded different parameters, which will be denoted as
Lm(t) and fm( Z).

Figure 9A shows an example of the two linear filters derived

Figure 8. A, The observed firing rate r ( t) (solid line) and the simulated
firing rate rm(t) (dashed line) generated by the model with relative refrac-
tory period for a single firing event. B, The observed firing rate r ( t) (thin
line) and the free firing rate qm(t) (thick line) for the same firing event.
Each curve was computed with 0.25 msec bins, for greater time resolution,
and then boxcar-smoothed over nine bins to roughly correspond to the
2 msec bins used elsewhere. C, The observed firing rate r( t) computed in
2 msec bins plotted against the corresponding values of the free firing rate
qm(t) (dots). Also shown is the steady-state relation r 5 q/(1 1 qm) for
absolute refractory periods of m 5 1.5 msec (dashed line) and m 5
3.5 msec (solid line).

2208 J. Neurosci., March 15, 1998, 18(6):2200–2211 Berry and Meister • Refractoriness and Neural Precision



from the observed firing rate and the free rate. The large
downward component preceding the action potential indicates
that this cell was OFF-type. Both filters have a standard
biphasic shape (Sakai et al., 1988; Meister et al., 1994; Smir-
nakis et al., 1997), implying a band-pass frequency character-
istic, and thus a transient light response. The filter from the
free firing rate Lm(t) is somewhat stronger than L(t), especially
in its second peak, and also has slightly shorter latency. This
enhancement of the filter can be explained if the largest values
of q follow more intense stimulus patterns that involve larger
excursions from the mean light level. Stronger stimuli also tend
to elicit responses faster, consistent with the shorter time-to-
peak for Lm(t).

Both linear filters were convolved with the stimulus to obtain the
effective input Z(t) and Zm(t). Large values of the effective input
occur when the preceding stimulus had a time course similar to the
linear filter, whereas small values arise from stimulus patterns that
are unrelated. A positive value of Z marks an intensity variation
that matches the sign of the linear filter, for example a brief
dimming of the light ;70 msec earlier (Fig. 9A), whereas a negative
value indicates an intensity variation of the opposite sign.

Figure 9B shows the response function f( Z) obtained by
plotting the firing rate r(t) against its effective input Z(t). At
negative values of Z, the relationship produces a low floor of
firing at ;0.1 Hz, which appears unrelated to the effective
input. C learly, this cell does not convey much information
about intensity transients of the “wrong” sign. At positive
values of Z, the firing rate rises steeply, and follows an expo-
nential dependence over almost three orders of magnitude.
Then f( Z) saturates at a firing rate of ;100 Hz. The corre-
sponding response function for the free firing rate fm( Z)
follows a similar dependence at low Z. However, unlike f( Z), it
does not saturate at high values of Z, but contin-
ues to increase for more than another order of magnitude to
;2000 Hz. Thus, the free firing rate qm(t) can report the
strength of the stimulus over a much wider range than r(t), up
to the strongest intensity fluctuations encountered in these
experiments.

DISCUSSION

In summary, we have shown that the light response of a retinal
ganglion cell can be captured well by its free firing rate q(t) and its
recovery from refractoriness w(t). Both of these functions can be
estimated directly from the raw spike trains without free param-
eters. This two-component description of the spiking process by
q(t) and w(t) has significant advantages over the traditional anal-
ysis of the observed firing rate r(t): it accounts correctly for the
trial-to-trial variation of the response, the precision of spike
timing and spike numbers, and other statistics of the spike train.
Furthermore, q(t) continues to vary under conditions in which r(t)
is saturated, and continues to distinguish gradations in the re-
sponse of the neuron. Thus, q(t) may prove useful for interpreting
the response of any spiking neuron.

Our method relies on determining the recovery function w(t)
directly from the distribution of interspike intervals. The recov-
ery function includes both an absolute and a relative refractory
period that extend over a short time interval of ;5 msec after a
spike. These characteristics are consistent with the refractory
properties of the ion channels that produce action potentials:
sodium channel inactivation leads to an absolute refractory pe-
riod and relative refractoriness can result from either shunting or
hyperpolarization while the potassium channel remains open
(Hille, 1984). Because these ion channels are ubiquitous in spik-
ing neurons, one expects the present results to be widely appli-
cable also outside the retina.

In fact, the effects of refractoriness on signaling have been
studied in cochlear nerve fibers (Gray, 1967; Gaumond et al.,
1982, 1983; Johnson and Swami, 1983; Miller and Mark, 1992).
Their spike trains reveal absolute and relative refractory periods
similar to those of salamander retinal ganglion cells. In cochlear
afferents, refractoriness was found to suppress the observed firing
rate relative to the free rate by a factor of 2–5 for acoustic clicks
and tone burst stimuli (Gaumond et al., 1983; Miller and Mark,
1992). At the onset of spiking episodes, the observed and free
firing rates agreed, but the observed rate became most strongly
suppressed when it achieved its highest values (Gaumond et al.,
1983). In related studies, refractory spike generation helped to
explain the power spectrum of spike trains from cochlear affer-
ents (Edwards et al., 1993) and from neurons in area MT of the
visual cortex (Bair et al., 1994).

Spike trains may also show a long-term dependence on
previous activity. Cochlear afferent fibers have, in addition to

Figure 9. Analysis of the light response for the observed firing rate
r ( t) and the free firing rate qm(t). A, The linear filter relating the light
stimulus to the effective input: L( t) for the observed firing rate (thin
line) and Lm(t) for the free firing rate (thick line). B, The response
function relating the effective input to the firing rate: f( Z) for the
observed firing rate (thin line) and fm(Zm ) for the free firing rate (thick
line). f( Z) was obtained by plotting values of r( t) against Z( t) every 5
msec, and then binning the range of Z at intervals of DZ 5 0.4 SD.
Thus, f( Z) is the average value of r ( t) over all time points that have an
effective input Z( t) between Z 2 DZ/2 and Z 1 DZ/2. The same
procedure was followed with qm(t) and Zm(t) to obtain fm(Zm ).
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a refractory period lasting ;4 msec, a gradual recovery period
extending 20 – 40 msec after an action potential (Gray, 1967;
Gaumond et al., 1982). Lowen and Teich (1992) found that
successive interspike intervals were not independent, but in-
stead showed negative correlations over time intervals up to
100 msec. When firing spontaneously or responding to sus-
tained tones, auditory neurons exhibit a spiking variance on
long time scales greater than expected from a Poisson process
(Teich et al., 1990). Furthermore, salamander ganglion cells
show a slowly inactivating outward membrane current
(Lukasiewicz and Werblin, 1988) that could contribute to a
gradual recovery from spiking. However, when driven by a
visual stimulus, these neurons appear strongly locked to the
intensity modulations. Spikes are grouped in well defined firing
events, and we have found little evidence for correlations
extending beyond the typical duration of a firing event. Thus,
the present work focused on a recovery function w(t) that
implemented only short-term refractoriness.

How should the free firing rate q(t) be interpreted? It is
tempting to imagine that q(t) is directly related to the synaptic
currents entering the ganglion cell, whereas the saturation in r(t)
results from the refractory properties of its active membrane. If
this were the case, then the relationship between q and r observed
here (Fig. 8) could also be measured by injecting current into a
ganglion cell through an intracellular electrode. Such experi-
ments with retinae from salamander (Diamond and Copenhagen,
1995) and turtle (Baylor and Fettiplace, 1979) have reported a
rather linear dependence between the injected current and the
ganglion cell firing rate. A similar linear relationship has been
observed in other spiking neurons (Granit et al., 1966; Lanthorn
et al., 1984; Powers et al., 1992). However, the peak firing rates
achieved by current injection (50 Hz in salamander) (Diamond
and Copenhagen, 1995) were not high enough to sample refrac-
toriness. Clearly, it would be rewarding to explore the depen-
dence of firing rate on synaptic input over a greater range.

Our analysis of the effects of refractoriness indicates that a
longer absolute refractory period serves to improve the response
precision of ganglion cells and increase their information rates.
Similarly, in the auditory system, realistic refractoriness has been
shown to reduce the variance in the response of cochlear afferents
to vowel sounds from its value with no refractoriness (Miller and
Mark, 1992). These results suggest that a refractory period can
improve neural signaling. The refractory period is commonly
thought to limit the performance of a neuron, but this view is tied
to a preconception about how the cell conveys its signal. If neurons
use a “firing rate code,” in which the message lies in the instanta-
neous frequency of firing, then refractoriness does reduce the
dynamic range of neural output by causing saturation in the firing
rate. However, if the message lies in the number of spikes fired
during a discrete firing event, then the maximum firing rate is not
a limitation, because the cell can simply fire for a longer period of
time to produce more spikes. In this case, the refractory period
improves the temporal precision of the second and subsequent
spikes in an event, leading to a spike count of much higher fidelity
than would obtain from a Poisson process. Considering the re-
ceiver of such nerve messages, it is plausible that postsynaptic
neurons “count” the number of spikes in an event, because the
typical firing event duration of ;20 msec is within a postsynaptic
integration time, whereas the interval between events is much
greater.
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