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SUMMARY

Advances in technology are opening new windows
on the structural connectivity and functional dy-
namics of brain circuits. Quantitative frameworks
are needed that integrate these data from anatomy
and physiology. Here, we present a modeling
approach that creates such a link. The goal is to infer
the structure of a neural circuit from sparse neural
recordings, using partial knowledge of its anatomy
as a regularizing constraint. We recorded visual re-
sponses from the output neurons of the retina, the
ganglion cells. We then generated a systematic
sequence of circuit models that represents retinal
neurons and connections and fitted them to the
experimental data. The optimal models faithfully
recapitulated the ganglion cell outputs. More impor-
tantly, they made predictions about dynamics and
connectivity among unobserved neurons internal to
the circuit, and these were subsequently confirmed
by experiment. This circuit inference framework
promises to facilitate the integration and under-
standing of big data in neuroscience.

INTRODUCTION

Much of neuroscience seeks to explain brain function in terms of

the dynamics in circuits of nerve cells. New parallelized technol-

ogies are greatly accelerating the pace of measurements in

this field. The structure of brain circuits, namely the shapes of

neurons and their connections, can be determined from high-

throughput, three-dimensional light and electron microscopy

(EM) [1]. The dynamics of signals in those neurons are revealed

by a host of parallel recording methods that use optical or elec-

trical readout simultaneously from many hundreds of neurons

[2, 3]. What is urgently needed is a modeling framework that

can integrate these data, provide an explanatory link between

structural connectivity and neural dynamics, and finally reveal

the overall function of the system.

Neural circuit diagrams (Figures 1 and S1) are a powerful

abstraction tool, because they serve as an explanatory link be-
Curre
tween brain anatomy and physiology [4–7]. In the conventional

mode, one proceeds from structure to function: anatomical

studies reveal how neurons are connected. From this, one con-

structs a circuit diagram that predicts the signal flow through the

circuit. Those predictions are then tested by physiological exper-

iments. It is worth considering whether this traditional process

can be generalized in a way that meets more realistic needs of

neuroscience. Typically, one has only sparse and incomplete

knowledge of the circuit’s structure. For example, even the

best EM images cannot reveal the strength of every synapse.

Similarly, the functional data are limited, for example, to neural

recordings from those cells that are most accessible. A circuit

model that satisfies both these datasets can serve as the glue

needed for their integration. If successful, such a model can

make new predictions both for neural connectivity and for neural

function that serve to motivate the next round of experiments.

Here, we present an approach for inference of neural circuits

from sparse physiological recordings. To test the feasibility of

this scheme, we worked with a neural system about which a

good deal of ground truth is known already: the vertebrate retina

[6, 8]. In physiological experiments, we stimulated the input layer

of photoreceptor cells with complex visual stimuli and recorded

theoutput signals from retinal ganglion cellswith amulti-electrode

array. We then devised a systematic series of models for the

intervening circuitry, yielding a best-fit circuit diagram for each

ganglion cell type. This method inferred correctly several well-es-

tablished features of retinal circuitry. It also revealed some unex-

pected aspects, such as the existence of two different feedback

systems. Finally, a critical test of the approach is whether it can

predict new circuit structures that were not directly observed.

Indeed, the modeling made specific predictions for the response

properties and connectivity of bipolar cells, and we subsequently

confirmed these quantitatively by direct physiological recordings.

RESULTS

We recorded the spike trains of �200 ganglion cells in the iso-

lated salamander retina while stimulating the photoreceptor

layer with a spatially and temporally rich display: an array of ver-

tical bars that flicker randomly and independently at 60 Hz (Fig-

ure S2A). This stimulus drives a wide range of spatiotemporal

computations in the retina; at the same time, its restriction to

one spatial dimension limits the complexity of analysis and
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Figure 1. A Progression of Circuit Models

Constrained by Retinal Anatomy

(A)Schematicof thecircuit upstreamofaganglioncell

in the vertebrate retina. Photoreceptors (P) transduce

the visual stimulus into electrical signals that propa-

gate through bipolar cells (B) to the ganglion cell (G).

At both synaptic stages, one finds both convergence

and divergence, as well as lateral signal flow carried

by horizontal (H) and amacrine (A) cells. The bipolar

cell and its upstream circuitry are modeled by a

spatiotemporal filter, a nonlinearity, and feedback

(bipolar cell module [BCM]; blue). The amacrine cell

introduces a delay in lateral propagation (amacrine

cell module [ACM]; red). The ganglion cell was

modeled by a weighted summation, another nonlin-

earity, and a second feedback function (ganglion cell

module [GCM]; green). Drawings after Polyak, 1941.

(B) LN model. A different temporal filter is applied to

the history of each bar in the stimulus. The outputs

of all of these filters are summed over space. The

resulting signal is passed through an instantaneous

nonlinearity.

(C) LNSN model. The stimulus is first processed

by partially overlapping, identical BCMs, each of

which consists of its own spatiotemporal filter and

nonlinearity. Their outputs are weighted and sum-

med by the GCM, which then applies another

instantaneous nonlinearity to give the model’s

output. For display purpose, the BCMs are shown

here to span only three stimulus bars, but they

spanned seven bars in the computations.

(D) LNSNF model. This is identical to the previous

one, except that the GCM (depicted here) has an

additional feedback loop around its nonlinearity.

(E) LNFSNF model. This is identical to the previous one, except that the BCMs (one of which is depicted here) have an additional feedback loop around their

nonlinearities. This new feedback function is the same for all BCMs.

(F) LNFDSNFmodel. This is identical to the previous one, except that there is a delay inserted between each BCM and the GCM. These delays are allowed to vary

independently for each BCM.

(G) A count of the free parameters in the LNFDSNF model, color coded as in the model diagram. Except for the total (108), the numbers here also apply to the

LNSN, LNSNF, and LNFSNF models. The LN model has 186 free parameters in the linear filter (31 spatial positions, each with six-parameter temporal filter as in

Equations S3–S5) and one in the nonlinearity. See also Figures S1 and S3.
modeling. Repeated presentations of the same flicker sequence

reliably evoked very similar spike trains (Figures 2A, 2B, and

S2B), as expected from previous studies [9–11]. This suggests

that essential features of the retina’s light response can be

captured by a deterministic model of the ganglion cell and its

input circuitry [4]. In addition, we presented a long non-repeating

flicker sequence to explore as many spatiotemporal patterns as

possible. Thirty ganglion cells were selected for quantitative

modeling based on the stability of their responses throughout

the extended recording period.

Modeling Approach
We focused on predicting the firing rate of ganglion cells (GCs),

namely the expected number of spikes fired in any given 1/60 s

interval. Mathematical models were constructed that take the

time course of the flicker stimulus as input and produce a time

course of the firing rate at the output. The parameters of the

model were optimized to fit the long stretch of non-repeating

flicker (�80% of the data; the ‘‘training set’’). Specifically, we

maximized the fraction of variance in the firing rate that themodel

explains (Equation S10) [11]. Then the model performance was

evaluated on the remaining data examined with the repeated
190 Current Biology 27, 189–198, January 23, 2017
flicker (�20%; the ‘‘test set’’). This performance metric was

tracked across successive changes in the model structure.

As a formalism, we chose so-called cascade models [4, 5].

These are networks of simple elements that involve either linear

filtering (convolution in space and time) or a static nonlinear

transform. They map naturally onto neural circuitry (Figure 1)

and can be adjusted from a coarse-grained version (every

neuron is an element) to arbitrarily fine-grained ones (multi-

compartment models of every neuron and synapse).

As a reference point, we chose the so-called LN model, con-

sisting of a single linear-nonlinear cascade (Figure 1B). This

has been very popular in sensory neuroscience [12–14] and

serves as a common starting point for fitting neural responses.

This model was able to approximate the GC output (Figures

2A, 2B, and S2B), though with a wide range of performance for

different neurons (Figures 2C and 2D). Even with optimized pa-

rameters, however, the LN model predicts firing at times when

it should not, thus making the peaks of firing events wider and

flatter than observed (Figures 2A, 2B, and S2B).

Guided by knowledge of retinal anatomy, we then created a

sequence of four cascade models by systematically adding

components to the circuits (Figures 1C–1F). Each model derives
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Figure 2. The High Precision of Retinal Re-

sponses Allows a Sensitive Discrimination

of Circuit Models

(A and B) Response of a sample ganglion cell to

repetitions of the stimulus (A; zoom-in to one of the

firing epoch in B). (Top) Each row in the raster de-

notes spikes from a single stimulus repeat. (Bottom)

The time course of the firing rate (black; SE in gray)

and that of the output of the models fitted to the

same cell (blue, LN model; red, LNFDSNF model)

are shown. See also Figure S2.

(C and D) A performance summary of all models

reveals the most effective circuit features. The

example cell in (A) and (B) is highlighted in orange.

(C) Explained variance (EV) of individual cells (gray

line for each cell) across models (distinct colors) is

shown. LN, 0.25 ± 0.15; LNSN, 0.29 ± 0.15; LNSNF,

0.38 ± 0.15; LNFSNF, 0.40 ± 0.18; LNFDSNF, 0.42 ±

0.16; median (black horizontal bar) ± interquartile

range. (D) Variance explained by eachmodel plotted

as a ratio to the variance explained by the LN model

is shown. Each point along the horizontal axis cor-

responds to a different ganglion cell, and they are

sorted based on their visual response type and or-

dered by increasing variance ratio under the most

complex model. Note the substantial jump in per-

formance from introducing a nonlinearity at the

bipolar cell output (blue to indigo) and from

introducing feedback (indigo to green). See also

Figure S7.
its name from the cascade of components. The last one is the

linear-nonlinear-feedback-delayed-sum-nonlinear-feedback

(LNFDSNF) model (Figure 1F). For eachmodel class, the compo-

nents of the circuit were parameterized and the fitting algorithm

found the optimal parameter values for each GC (Figure S3).

Each model circuit is more general than the previous one and

significantly outperformed it in predicting the visual responses

of certain GCs (p < 0.001 for every step; sign test; Figures 2C

and 2D). The improvement, however, is not simply due to over-

fitting after addition of more free parameters (Figure 1G). In

fact, the LN model has the most free parameters among the

models we tested. We also used separate training and testing

data and achieved equivalent values in the explained variance.

This implies that each model truly captures additional aspects

of the computations carried out by the retina, and their biological

realism will be examined for each case.

LN to LNSN: Multiple Bipolar Cell Modules
Each GC generally pools information from many bipolar cells

(BCs) [8]. Previous studies using intracellular recordings have

shown that a single BC and its upstream circuitry of photorecep-

tors and horizontal cells can be well described as a single spatio-

temporal linear filter, at least for a moderate dynamic range of

stimulus intensity [15]. In addition, transmission at the synapse

from BC to GC introduces a nonlinearity, at least for certain BC

types [15].

All this suggests a linear-nonlinear-sum-nonlinear (LNSN)

model (Figure 1C): this consists of several ‘‘bipolar cell-like’’

modules, each of which is a miniature LN model in itself. Their
output is weighted and summed (S), followed by another

nonlinear (N) function to produce the GC firing rate [16]. To avoid

an excess of free parameters, we took the bipolar cell modules

(BCMs) to all be identical but placed at different spatial locations

in the retina, at increments of one stimulus bar width (66 mm). The

BCM outputs are then weighted, pooled together, and rectified

by the ganglion cell module (GCM). The second rectification is

necessary because some of the pooling weights may be nega-

tive, whereas the firing rate of the GC must be positive. In addi-

tion, the GCM nonlinearity can express thresholds and rectifica-

tion in the relationship between synaptic inputs and firing rates.

The fitting algorithm optimized the spatiotemporal filter and

nonlinearity of the BCM, as well as the pooling weights of the

GCM and its nonlinearity. Owing to the internal nonlinearity in

the circuitmodel, the LNSNmodel achieved a better performance

in predicting the GC visual responses than the LN model (24% ±

5% increase in the explained variance; mean ± SE; Figure 2D).

Note that this improvement in performance came despite a sub-

stantial reduction in the number of free parameters (from 187 to

68). Imposing a structure guided by known anatomy of the

retina—the repeating identical subunits from bipolar cells—pro-

vides a constraint that regularizes the optimization process and

circumvents the ‘‘curse of dimensionality’’ in model fitting. At the

same time, this circuit structure seems to be closer to ground

truth, as it provides a better match to the system’s function.

Beside this improvement in the model’s performance, several

results were robust across all GCs (Figures 3 and 4). First, the

spatiotemporal filter of the BCM (Figure 3A) matched existing

direct measurements of salamander BC receptive fields in the
Current Biology 27, 189–198, January 23, 2017 191
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Figure 3. The LNSN Model Predicts Small

Subunits of the Receptive Field

Spatiotemporal filters for the BCM subunits (A) and

the GCM pooling functions (B) derived from fits

using the LNSN model. Results for two represen-

tative GCs are shown (left, OFF type; right, ON type),

whose spatiotemporal receptive fields are shown in

(C). All panels have the same spatial scale. See also

Figures S5A and S5B.
overall characteristics. In the spatial domain, these BCM filters

attained a ‘‘Mexican hat’’ shape—with large values in the center

and small opposite polarity values in the surround—and had a

much narrower range (106 ± 32 mm; median zero-crossing

radius ± interquartile range) than the measured GC receptive

fields (180 ± 64 mm; p < 0.001; sign test; Figure 3C). In the time

domain, the kinetics of the OFF-type BCMs that depolarize at

light offset were faster than the ON-type ones that depolarize

at light onset (Figure 3A). These characteristics are all consistent

with the experimental data [15, 17, 18].

Second, the pooling weights of the GCM also attained a cen-

ter-surround structure but at a considerably larger scale (Fig-

ure 3B). The spatial extent of the GCM center (194 ± 39 mm; me-

dian zero-crossing radius ± interquartile range) was significantly

larger than that of the BCM center (p < 0.001; sign test) and com-

parable to that of the GC dendritic field in the salamander retina

[15, 19, 20]. The model thus inferred correctly a distinct differ-

ence in the spatial pooling properties between circuits in the

outer retina (BCM component) and the inner retina (GCM).

Finally, the BCM output nonlinearities fell into three categories

(Figure 4): linear, monotonic-nonlinear, and U-shaped. Whereas

the linear type was found only in the ON GCs (Figure 4A), the

nonlinear types were found more frequently in the OFF GCs (Fig-

ures 4B and 4C). The GCs with the U-shaped BCM nonlinearity

most likely received excitation from both ON and OFF BCs and

indeed responded to a transition of the stimulus intensity in either

direction (data not shown, but see, e.g., [21, 22]). Nevertheless,

the BCM outputs were always highly dominated by one polarity

(OFF inputs in most cases) over the other, with about a 10-fold

difference in the magnitude (Figure 4C).

For most ganglion cells, the BCM nonlinearity had an ‘‘expan-

sive’’ shape with upward curvature [23]. To reduce the number of
192 Current Biology 27, 189–198, January 23, 2017
free parameters, we checked whether this

shape could be replaced by a simple half-

wave rectifier in subsequent modeling

steps. Indeed, this simplification hardly

affected the fit (by only 0.01 ± 0.02 in the

explained variance; mean ± SD), suggest-

ing that the precise shape of the nonline-

arity is not essential for the responses to

this broad stimulus set.

LNSN to LNSNF: Ganglion Cell
Output Feedback
The models presented so far have an

instantaneous nonlinearity at the GCM

output. Spike generation, however, in-

volves dynamic processes, such as a
slow inactivation of the sodium current in GCs [24]: an increase

in firing inactivates the current, which in turn leads to reduced

spiking. The inactivation can last for hundreds of milliseconds

and is partly responsible for contrast adaptation in retinal re-

sponses [24]. In general, any non-instantaneous process that

depends on the output cannot be modeled by the LNSN model.

A feedback loop around the GCM nonlinearity, however, can

emulate these effects [10, 11]. Following the rules of cascade

modeling, we implemented the feedback as a linear filter, leading

to the linear-nonlinear-sum-nonlinear-feedback (LNSNF) model

(Figure 1D).

The optimized feedback filter generally consisted of a short

positive lobe followed by a longer negative lobe (Figure 5A).

The positive lobe was essentially instantaneous, limited to just

one stimulus frame (17 ms). The negative lobe could be fit by

an exponential with decay time 93 ± 102ms (median ± interquar-

tile range). With the inclusion of the feedback function, the

LNSNF model produced greatly improved fits to the GC visual

responses, especially when there is a strong negative feedback

(Figure 5B). For most GCs, this was the most beneficial step in

the series of the circuit models considered (29% ± 2% increase

in the explained variance from the LNSN model; mean ± SE;

Figure 2D).

How does the feedback kernel exert such large effects? The

short positive lobe drives the firing rate high as soon as the

threshold for firing is crossed, which makes for a sharp onset

of firing bursts. Then the later negative lobe eventually sup-

presses the response following a period of firing—as in an

after-hyperpolarization [25]—with two important effects (Fig-

ure S4): first, the early part of the negative lobe (�100 ms) serves

to terminate the bursts of firing at the proper duration (Figures

S4C and S4D). Second, the later tail prevents the model from
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sity of Transfer Functions at the Bipolar Cell

Synapse

The internal nonlinearity of the BCMmodule inferred

by the LNSN circuit model for different ganglion

cells. The horizontal axis measures the input to that

nonlinearity in units of its SDs; the vertical axis

shows the output of the functions. The nonlinearities

are classified into three types: linear (A), monotonic

nonlinear (B), and U-shaped (C). The BCM outputs

are much more rectified for OFF GCs (blue) than

for ON GCs (red; p = 0.005; c2 test). See also

Figure S5C.
firing for some time after a burst and thus suppresses false re-

sponses that would otherwise appear (Figures S4E and S4F).

As a result, the feedback allows the response peaks in the GC

output to be taller and sharper, because parameters that control

the overall gain are free to grow without incurring a penalty from

the appearance of superfluous firing events.

LNSNF to LNFSNF: Bipolar Cell Synapse Feedback
Another site of adaptation in the retina is the BC synapse. The

depletion of glutamate vesicles and an activity-dependent

reduction in the efficiency of their exocytosis depress the syn-

apse on the timescale of tens to hundreds of milliseconds [26].

A second feedback loop, this time around the BCM nonlinearity,

can be used to model this effect. This introduces a BCM

feedback and results in the linear-nonlinear-feedback-sum-

nonlinear-feedback (LNFSNF) model (Figure 1E). This extension

led to small but robust improvements in the fit, primarily for

the OFF GCs (3% ± 1% increase in the explained variance;

mean ± SE; Figure 2D).

The two feedback functions for the BCM and GCM often took

on different shapes (Figure 5A). For some GCs, the positive lobe

was concentrated in one feedback stage and the negative lobe in

the other. These differences were significant: swapping the two

functions degraded the fit, and a subsequent parameter optimi-

zation led to a recovery of the original shapes (Figure S5D). For
Current
different GCs, the feedback function was

dominated either by the component

around the GCM or around the BCM (Fig-

ure 5A), and cells in the latter category

benefited most from introducing a sepa-

rate BCM feedback to the circuit model.

This distinction is prominent especially

for the negative portion of the feedback

filter (Figure 5C). In summary, feedback

plays an important role overall in modeling

the responses correctly, yet different GCs

vary in the relative importance of the bipo-

lar and ganglion cell feedback stages.

LNFSNF to LNFDSNF: Amacrine Cell
Delay
Previous studies suggest that the negative

surround of the GCM-pooling function

(Figure 3B) arises via inhibition from ama-

crine cells that carry the information from
more distant BCs [8]. Because processing in the intermediary

amacrine cells requires extra time, the input to the GCM from

BCMs in the distant surround should be delayed with respect

to the input from central BCMs. In fact, one can observe these

delays directly in the spatiotemporal receptive fields (Figure 3C)

and the filters of the LN model (Figure S3, top row). This moti-

vated another development of the circuit model: an independent

delay parameter for each BCM prior to their pooling. This time

delay can be represented by a simple linear filter, and thus, the

model still conforms to the basic cascade structure. The result-

ing circuit was called the LNFDSNF model (Figure 1F).

Fitting the LNFDSNFmodel yielded, in particular, the delays as

a function of spatial position (Figures 6A and 6B). Overlaying this

on the simultaneously fitted pooling weights clearly shows that

the surround is delayed relative to the center (Figure 6A). This

delay ranged from 6 to 66 ms (26 ± 12 ms; median ± interquartile

range; Figure 6B), where the GCs with virtually no delay had

a very weak surround. The delay did not depend on distance

from the center, suggesting that it derives from integration in

the additional interneuron, not from conduction times along

amacrine and ganglion cell processes.

The delays affect the model’s predicted receptive fields of

GCs,making themmore similar to the experimental data (Figures

6C and 6D). The spike-triggered average analysis, which pro-

vides a linear estimate of a neuron’s receptive field [12], shows
Biology 27, 189–198, January 23, 2017 193
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that the surround of the GC receptive field generally lags behind

the center (Figure 6C). This is accurately reproduced by the

LNFDSNF model, but not by the LNFSNF model (Figure 6D).

Even though the LNFSNF model has a delayed surround in its

BCMs (Figure S3), this surround is not spatially large enough to

account for what is observed in the GC receptive fields. In

contrast, the LNFDSNF model has a new way of delaying the

receptive field surround independently of the other circuit ele-

ments. It can thus accommodate without trade-offs the delayed

receptive field surround and achieve a better performance (8% ±

2% increase in the explained variance; mean ± SE; Figure 2D).

Experimental Tests of the Models
An argument for designing response models with a cascade ar-

chitecture is that theymap naturally onto real biophysical circuits

of neurons. The ultimate test of this approach is whether the el-

ements inferred in the fitting process have actual biological

counterparts. To explore the biological realism of the models,

we next focused on two predictions about BC physiology

and subjected them to direct experimental tests. Specifically,

we measured the receptive and projective fields of real BCs

[27, 28] and compared them to their predicted counterparts:

the BCM filters and the GCM pooling functions, respectively.

These experiments were carried out by combining sharp elec-

trode recordings from BCs and multi-electrode array recordings

from GCs. To identify the projection patterns from BCs to

GCs, we intracellularly injected current into individual BCs while

recording the spiking responses of multiple GCs. This permitted
194 Current Biology 27, 189–198, January 23, 2017
the selection of GCswhose spiking activity was strongly affected

by the BC current injection (Figure S6A). To measure the recep-

tive fields of those BC-GC pairs simultaneously, we also re-

corded their visual responses to the flickering bar movie pre-

sented to the photoreceptors. In total, we mapped both the

receptive and projective fields in six BCs, and 14 BC-GC pairs

were selected for the model fitting because they showed strong

projections between the cells. This data selection was done

before fitting the models to avoid biasing the results.

BCM Filters versus BC Receptive Fields

Reverse-correlationmethodswere applied to bipolar cell record-

ings to obtain a linear estimate of the bipolar cell receptive field

(Figure 7A). This was compared to the BCM filter in a model that

fits ganglion cell recordings. We found that the prediction and

measurement matched well with each other despite the model’s

assumption that a GC receives signals from all identical BCs.

Specifically, the spatial characteristics of the BCM filters were

consistent with those of themeasured BC receptive fields, rather

than those of the GC receptive fields (Figures 7A, 7B, and S6B).

Moreover, the BCM filters obtained from GCs that receive pro-

jections from the same BCs resembled each other more than

those from GCs with projections from different BCs (p = 0.02;

ANOVA; Figure 7B). All this indicates that the BCMs of the circuit

model correspond well to the real biological BCs that provide

inputs to the target GC.

GCM Pooling Functions versus BC Projective Fields

Injecting current into a BC affects the firing of its downstream

GCs (Figure S6A). We quantified this effect by the projective
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Figure 6. LNFDSNF: Time Delays from Ama-

crine Cell Processing Explain the Spatiotem-

poral Receptive Fields of Ganglion Cells

(A) Delay functions (black; relative to the center) and

the pooling functions (gray) for two representative

cells (left, OFF type; right, ON type). The delays are

longer in the surround (magenta; weighted average

by the pooling weights) than in the center (green),

and the transition occurs at the same spatial loca-

tion where the pooling function crosses zero.

(B) Population data histogram of the relative delays

from the center to the surround (median value in

magenta; p < 0.001; sign test). The cells in (A) are

highlighted in orange.

(C) Receptive fields (same cells as in A) calculated

from the data (STA, top) show the surround

(magenta, peak latency) lagging behind the center

(green). Receptive fields calculated from the

LNFDSNF model reproduce this feature (middle),

but those from the LNFSNF do not (bottom).

(D) The difference in the peak latency between the

center and the surround across different models.

Each gray line indicates a cell, and the cells in (C) are

highlighted in orange. The black horizontal bars

show themedian values, with significant differences

between the STA and those models without

delays (LNSN, LNSNF, and LNFSNFmodels; all with

p < 0.001; rank sum test). The difference in the

relative delay between the STA and the LNFDSNF

model is not significant (p > 0.9).
weight, defined as a normalized ratio (difference over sum as in

Equation S1) between the GC firing rates in response to BC de-

polarization and hyperpolarization, andmeasured its relationship

to the distance between the BC and GCs. The resulting projec-

tive field represents spatial characteristics of an information

flow that is ‘‘outward’’ from a BC onto multiple GCs. In contrast,

the GCM pooling function defined in our models refers to infor-

mation being pooled ‘‘inward’’ from multiple BCMs into a single

GCM. Strictly speaking, the measured projective field and the

predicted pooling function are thus different objects, yet we

found that these two spatial profiles are comparable. They

both had a center-surround structure, with positive (excitatory)

weights in the center and weaker negative (inhibitory) ones in

the surround (Figures 7C, 7D, and S6C). Together, the similarities

between the predicted and measured circuit properties suggest

that the cascade model presented here is a powerful tool for

inferring the inner details of a neural circuit from simulation and

fitting of its overall performance.

DISCUSSION

We set out to derive circuit models of the retina directly from

measurements of its input-output function (Figures 2A, 2B, and

S2). We considered network models in which the neurons and

their connections are explicitly represented. The cells and syn-

apses of the circuit diagram were converted to parametric math-

ematical expressions (Figures 1 and S1). Then, a high-dimen-

sional parameter search yielded the optimal neural circuit to

match the functional measurements (Figures 2C and 2D). The

main results of this circuit inference are as follows: (1) The
models can reliably distinguish the circuit functions of the inner

and the outer retina. Lateral convergence in the inner retina

acts over larger distances than in the outer retina (Figures 3

and 7), and distinct feedback functions are employed at the

two processing stages (Figure 5). (2) The models inferred

correctly that different types of retinal GCs have distinct circuit

architectures. Major differences involve the spatiotemporal

characteristics of BC receptive fields (Figure 3) and the degree

of rectification at the BC synapses (Figure 4). (3) The circuit

models are not merely mathematical abstractions but represent

biological reality (Figure 6). For example, circuit inference made

accurate predictions for the visual response properties of BCs

and their connectivity to GCs, as verified subsequently by direct

experimental measurements (Figure 7).

Modeling Strategy
Various strategies exist for modeling the input-output function of

a neural system [5]. On one end of the spectrum are abstract

mathematical techniques that map the stimulus (intensity as a

function of space, wavelength, and time) into the firing rate (a

function of time), for example, using a Volterra series [29, 30].

This has the attraction of mathematical completeness along

with theorems that govern the inference process for the model

parameters and its convergence properties. In practice, how-

ever, the structure of such abstract models does not fit naturally

to biological data. An accurate fit to neural response data often

requires many high-order kernels (Figure S7), whose values

cannot be estimated efficiently in reasonable experimental

time. Furthermore, the central objects of the model, the kernels,

do not relate in any natural way to the biological objects, the
Current Biology 27, 189–198, January 23, 2017 195
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Figure 7. Experimental Tests Confirm the

Circuit Structure Predicted by Modeling

(A) Predicted (top) and measured (middle) bipolar

cell receptive fields (BC RFs), with the corre-

sponding GC RF (bottom) obtained by a simulta-

neous BC-GC recording. Note that current injection

into this BC significantly affected the spiking activity

of this GC (Figure S6A). See also Figure S6B.

(B) Spatial characteristics of the receptive fields

across all BC-GC pairs with significant projections

(14 GCs, each receiving projections from one of six

BCs; the example in A is highlighted in orange). The

full width of the receptive field center at zero

crossing is significantly smaller in the predicted BC

RFs (left, 243 ± 50 mm; median ± interquartile range)

than in the measured GC RFs (right, 398 ± 57 mm;

p < 0.001; sign test). The difference between the

predicted and measured BC RFs (315 ± 68 mm) is

not significant (p > 0.1).

(C) The spatial profile of the pooling function of the

representative GC (top, with distance from the peak

in the horizontal axis) and that of the projective

weight of the simultaneously recorded BC (bottom,

with each dot representing the projection to a GC).

See also Figure S6C.

(D) Comparison between the pooling (197 ± 65 mm)

and projective weights (368 ± 178 mm; median ±

interquartile range of the zero-crossing radii at the

excitation-inhibition transition; p = 0.01; sign test).

Each gray line indicates the simultaneously re-

corded data (the example in C is highlighted in

orange).
neurons and synapses. It is thus difficult to draw further inspira-

tion for biological experiments from the response model.

On the other end of the spectrum, one finds models with

excessive realism: here, each neuron is represented with a

many-compartment biophysical simulation, governed by the

morphology of the cell, with many different membrane conduc-

tances, and coupled by synapses simulated at molecular detail

[31]. A selling point for such models is that they are exhaustive,

in that every conceivable molecular parameter can be given a

place in the model. But they are also exhausting, in that they

require inordinate computing effort to simulate anything. Most

of the parameters are unknown, and very few are directly observ-

able or under experimental control. Thus, the fitting process to

infer this vast number of parameters from data is often computa-

tionally intractable.

The modeling style chosen here falls in a golden middle (Fig-

ure 1). The neural circuit diagram incorporates biological detail

at a level that can actually be observed and manipulated exper-
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imentally: neurons; axons; synapses; and

dendrites. The signals coursing through

the model represent actual electrical sig-

nals in neurons. Individual neurons are rep-

resented by simple elements with linear

summation and a nonlinear output func-

tion. Cascade models of this type have

been in use for some time [32–34]. In gen-

eral, one assumes a certain cascade struc-

ture and then optimizes the set of parame-
ters that characterize the components. To this, our study adds

an additional search across different network structures. This

allows one to determine which plausible neural circuit best ex-

plains the functional data.

Implications for Retinal Circuits
A good model in biological sciences should give not only a faith-

ful description of a phenomenon but also some insights into the

underlying mechanisms along with experimentally testable pre-

dictions. We found that the internal circuit structure of the

best-fit models agrees with well-established features of retinal

circuitry (Figures 3, 4, 5, and 6) and also with our new experi-

mental observations (Figure 7). Below are two additional predic-

tions to be tested in future experiments, using direct measure-

ments of cellular physiology or synaptic connectivity.

First, our model predicts greater linearity of BC output in ON

GCs (Figure 4). At the ganglion cell level, such asymmetry be-

tween ON and OFF GCs has been reported in the mammalian



retina [35] and was largely attributed to network effects [36, 37].

For example, even though the outputs of both ON and OFF BCs

are mostly rectified [38], the visual response of ON GCs can be

linearized by a feedforward inhibition from OFF amacrine cells

(‘‘crossover inhibition’’) [39]. The asymmetry between the ON

and OFF pathways, however, has not been directly examined

in the salamander retina. It also remains to be studied how

the output properties of distinct BC types contribute to this

asymmetry.

Second, the model predicts distinct feedback processing at

the level of BC and GC outputs (Figure 5). The two feedback

functions can differ in polarity and dynamics, and such proper-

ties also varied across cells. The feedback in the inner retina

could arise from a cellular effect, such as synaptic depression

at the BC synapses [26] and after-hyperpolarization at the GC

level [25, 38], or from a network effect involving amacrine

cells driven by BCs [40, 41] or by GCs via gap junctions [42].

Given that addition of the feedback provided the greatest

improvement in model performance (Figures 2C and 2D), it is

worth examining how these or other mechanisms contribute to

the feedback effects and how those vary across different gan-

glion cell circuits.

Future Developments of Circuit Inference
The broad distribution of themodel performance (Figures 2C and

2D) suggests that there is room for improvement. One way to

improve the present model is to add more components. Instead

of using identical BCMs, for example, one could introduce

distinct BCM types, such as those corresponding to ON BCs

and OFF BCs. This will be essential for modeling ON-OFF

GCs, such as W3 cells in the mouse retina [43], and may also

serve to reveal interesting interactions between the ON and

OFF pathways [39, 44, 45].

Another way of refining the model is to represent amacrine

cells explicitly, not just through negative pooling weights and

time delays (Figure 6). Amacrine cells are a very diverse class

of retinal neurons [8] and participate in distinct circuit functions

[6]. For example, narrow-field amacrine cells are needed in

modeling direction-selective GCs [46], whereas wide-field ama-

crine cells can explain the suppression that many GCs receive

from distant stimuli [15, 22, 33, 47]. Using a broader range of vi-

sual stimuli will most likely help in inferring these diverse network

features.

Finally, such circuit inference methods should be extended

to other brain areas, in particular where one has information

about the structural connectome [1] along with large-scale

electrical and optical recordings [2, 3]. In most instances,

these recordings will be sparse, covering only a fraction of

neurons and synapses. The modeling approach advocated

here can fill in the gaps, using known structural information

as a guide in parameterizing the circuits and the available

functional observations as a target when optimizing the model

parameters. Future developments in this area might consider

a broader range of circuit architectures, including recurrent

connections between and within areas [48], and exploit other

objective functions for data fitting [49, 50]. Successful applica-

tion of such extended models and inference algorithms will

help derive insights from the impending flood of structural

and functional brain data.
EXPERIMENTAL PROCEDURES

See the Supplemental Experimental Procedures for details. No statistical

method was used to predetermine sample size. Unless otherwise noted, sta-

tistical comparisons across models and corresponding experimental data

were performed as sign tests with a significance level of 0.05.

Electrophysiology

Multi-electrode recordings from GCs and intracellular recordings from BCs in

an isolated retina (larval tiger salamander) were performed as described previ-

ously [15, 27], following protocols approved by the Institutional Animal Care

and Use Committee at Harvard University. The data from simultaneous

BC-GC recordings were analyzed similarly as in [28] for estimating the BC

projective field (Figure 7). The spatiotemporal receptive fields of the recorded

cells (e.g., Figure 3C) were estimated by reverse-correlation methods using

randomly flickering bar stimuli (bar width, 66 mm; refresh rate, 60 Hz; Fig-

ure S2A) [12].

Modeling

Weemployed the cascademodel framework [4, 5] and progressively extended

its complexity (Figures 1 and S1) from the linear-nonlinear (LN) model to the

LNFDSNF model. Each stage was modeled as follows:

‘‘L’’: BCM temporal processing was modeled as a sum of two infinite im-

pulse response filters at each spatial location (Equations S3–S5; Figures

S1A–S1C).

‘‘N’’: half-wave rectifiers (Equation S6; Figure S1D) were used to approxi-

mate the nonlinearity in all cases except for the LNSNmodel that employed

a pointwise static nonlinearity on the BCM output (Figure 4).

‘‘F’’: feedback process was modeled as a linear convolution of a temporal

kernel (Equation S7; Figure S1E).

‘‘D’’: the time delay was introduced by a linear filter that shifts each BCM

output in time (Equation S8; Figure S1F).

‘‘S’’: spatial pooling of the GCM is formulated as a weighted sum of the

BCM outputs (Equation S9; Figure S1G).

We wrote custom codes in C++ to fit the models to the ganglion cell firing

rates (bin size, 1/60 s) in response to the randomly flickering bar stimuli (Fig-

ure S3) and analyzed themodel performance by the explained variance (Equa-

tion S10) [11].

SUPPLEMENTAL INFORMATION
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and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.cub.2016.11.040.
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Figure S1, related to Figure 1: Schematics of LNFDSNF model components and related formulas.
(A) Linear filters (“L” stage), related to Eq.S3: x(t, i+j), the input stimulus at location i+j; y+j (t, i+j)+y−j (t, i+j),
the output of linear filter at relative location j; and y(t, i), the output of BCM at location i.
(B) Impulse response of the IIR filters, related to Eq.S4. The positive lobe of the BMC temporal processing y+ is
obtained by shifting Y + in time t by the amount δ+. The negative lobe y is similarly obtained by the time warp of Y
(by the amount δ−; not shown). Indices for space and time are omitted for clarity.
(C) Dependence of the IIR filter Y (impulse response) on the free parameters (α, amplitude; β ≥ 0, timescale), related
to Eq.S5. All indices are omitted for clarity, but note α+ ≥ 0 for Y + and α− ≤ 0 for Y −.
(D) Half-wave rectifier at threshold θ, related to Eq.S6.
(E) BCM feedback (together with nonlinearity; the first “NF” stage), related to Eq.S7. Note that the output of BCM
linear filter is denoted as the input x(t) to this stage.
(F) Delay function (“D” stage), related to Eq.S8.
(G) GCM spatial pooling (“S” stage), related to Eq.S9.
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Figure S2, related to Figure 2: More examples for the measured and predicted ganglion cell visual responses.
(A) One stimulus frame. The stimulus was an array of adjacent vertical bars (66 µm width), whose gray intensities
flickered simultaneously and independently at 60 Hz. The overlaid circles indicate the typical extent of a ganglion
cell’s receptive field (red) and its center (blue).
(B) Typical responses of a ganglion cell to repetitions of the stimulus in the same format as in Figure 2A (top, raster
graph; bottom, time course of measured and predicted ganglion cell firing rate; E.V. values are shown for each model
in corresponding color).
(C–E) Three more examples of ganglion cell visual responses (in the same format as in panel B, bottom).
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Figure S3, related to Figure 1: Optimized parameters across cells and models. Fitted model parameters for 11
representative ganglion cells of various types. Entries for parameters that did not lead to at least 5% improvement have
been left blank.

Fitting some of these circuit models involved optimizing well over 100 parameters (Figure 1G). This is less of a
challenge under special conditions where the objective function is convex and has just one optimum. Such restrictions
apply, for example, to the simplest cascade model (LN) and some other models attractive to neuroscience [S1, S2].
However, the most general neural circuit involves stages of feedback and recurrence, and one cannot expect convexity
in the system parameters. It is then a major concern whether optimization in such a large space can converge to a
global solution.

Of course it always helps to limit the number of parameters at the outset. We thus kept the retinal circuit models
as simple and basic as possible in their structure. Specifically, we took all BCs in a given GC circuit to have the
same properties, and constrained the BCM and GCM nonlinearities to a half-wave rectifier (Figure S1). The resulting
parameter estimates were indeed robust, as verified by various tests (Figure S5). When convergence was problematic
we changed the structure of the model; for example this occurred in an attempt to fit the full shape of the GCM
nonlinearity, which was then replaced by a simpler rectifier (see Supplemental Experimental Procedures).

We also restricted the stimulus to one dimension in space and one in time (Figure S2A). This gave enough power
to resolve both spatial and temporal structure of the circuit components. Many retinal circuits are isotropic to good
approximation, so that sampling of one spatial dimension is sufficient. There are some exceptions, though, such as
direction-selective GCs that form distinct circuits for their specific functions [S3]. Consequently, our circuit models
did not perform well for all cells (Figure 2C,D). This suggests that the circuit models (and visual stimuli) will need to
be tailored for each GC type to better probe the underlying circuits. Such tailored models may require a larger number
of free parameters. We expect that future development of efficient search algorithms will make it possible to apply a
machine learning approach even to those more complicated models [S4].
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Figure S4, related to Figure 5: Detailed effects of GCM feedback on the model output.
(A) LNSNF feedback function fitted to a representative cell.
(B) The corresponding output of the model (black) and the data (blue).
(C) The same feedback function as in A but with the early portion up to 100 ms removed.
(D) The model output using the modified feedback function in C shows that many firing events become broader than
appropriate.
(E) The same feedback function as in A but with the long tail beyond 100 ms removed.
(F) The model output using the modified feedback function in E shows many superfluous firing events at inappropriate
times.
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Figure S5, related to Figures 3–5: Numerical tests of the fitting algorithm. Unlike the simple LN model, whose
convexity properties guarantee a single optimum in parameter space [S1], the more complex models considered here
may allow for multiple local optima. Moreover, the fitting algorithm we used (the Polak-Ribière variant of conjugate
gradient ascent) [S5] is not guaranteed to converge to a globally optimal solution. To test the fitting results thoroughly,
we thus carried out various kinds of convergence tests.
(A) As the first minimal test of the present methods, a specific parameterization of the LNSN model was used to
generate artificial data. Starting with various initial conditions, we then fitted the model to such artificial data. The
parameters converged to the ones used to generate the artificial data, even for widely different initial conditions,
confirming that the search algorithm can find a parameter set with known “ground truth”.

Shown here are the convergence results for artificially generated data, using the LNSN model. The three initial
conditions for the BCM filters are on the left (red hue, ON-polarity; blue hue, OFF-polarity) and the initial pooling
functions appear in the violet insets. The leftmost initial condition was the one used to generate the data. The cor-
responding results after fitting are on the right. The BCM filters and pooling function converge to the values used to
generate the data, regardless of the initial condition.
(B,C) When using real data, a different type of test is necessary, because the ideal values of the parameters are not
known. One strategy was to vary the initial values of the parameters and see if the search converges on a consistent set
of final values. These tests covered the BCM filters and the pooling weights in the LNSNF model (B) and the BCM
output nonlinearity in the LNSN model (C). The initial condition for the feedback was set to zero in all applicable
cases. While the fitted parameters converged to the same values in most cases, some initial conditions ended up with
different parameters from the rest. On most of these occasions, however, the attained explained variance was much
lower than for the optimal parameter set. Presumably these initial conditions were too far from the global optimum
and led to an inferior local optimum.

Shown in B are the convergence results for real data, using the LNSNF model. Each row corresponds to a different
set of initial conditions (left column) for the BCM filters and the pooling weights. After 100 iterations, the results have
converged (middle column), and this is unchanged by subsequent 100 iterations (right column).

Shown in C are the convergence results for the BCM output nonlinearities of a representative linear cell (top) and
nonlinear cell (bottom). The three colors correspond to different initial conditions for the nonlinearity: a half-wave
rectifier, a linear function, and a step function. Due to degeneracies of the model, an overall additive constant and an
overall multiplicative factor are inconsequential. The functions shown here have therefore been rescaled.
(D) In seven of 30 GCs, the transition from LNSNF to LNFSNF resulted in >5% fractional improvement in the
explained variance (Figure 5C). This suggests that the second feedback function improves the circuit model in a
substantial way. Because the two feedback functions, the one around the GCM and the other around the BCM, often
attained distinct shapes (Figure 5A), we tested if these two shapes are interchangeable due to a degeneracy or specific
to their locations within the circuit model. We restricted the test to those seven GCs, and re-ran the LNFSNF model
on each of them as follows: the fitted BCM and GCM feedback functions were exchanged for each other and fed back
into the model as the new initial conditions, while simultaneously resetting all the other free parameters.

The result was that the feedback functions reverted back to the original fitting results in all cases. An example is
shown here for the independent convergence of the BCM feedback (top row) and GCM feedback (bottom row) of the
LNFSNF model. Fitting identically-zero initial conditions yields typical shapes for both feedback functions (left two
columns). Swapping them for each other, resetting the other free parameters, and fitting again restores the feedback
functions that had been found in the first place (right two columns). This suggests that the two feedback elements
around the pre- and post-pooling parts of the model do indeed have distinct properties, each playing a unique role in
retinal processing.
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Figure S6, related to Figure 7: More examples for the experimental tests of the models.
(A) Spiking responses of four GCs in response to current injections (±500 pA square pulses) into a single BC (top
row, injected current trace). The first three GCs (rows 2–4) are more likely to fire than by chance during a depolarizing
current injection (green shade), suggesting a significant projection from that BC (χ2 ≫ 1). For comparison, the last
row shows a fourth GC that did not receive a projection from the source BC. The first GC corresponds to the example
in Figure 7A.
(B) Predicted (top) and measured (middle) BC receptive fields (RFs), with the corresponding GC RF (bottom) obtained
by a simultaneous BC-GC recording. The left and right columns correspond to the second and the third examples in
A, respectively.
(C) The pooling function of the two representative GCs (top) and the projective weights of the simultaneously recorded
BC (bottom); left and right from the corresponding BC-GC pairs in B.
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Figure S7, related to Figure 2: Spike-triggered covariance analysis for a typical cell across models. We evaluated
the model performance using the explained variance of the model, as defined in Eq.S10, which compares the full time
courses between the firing rate responses of GCs and the model outputs. There are, however, many other statistical
quantities that could be used instead, which extract and emphasize certain aspects of the stimulus-response relation-
ship. As an alternative technique for assessing the models, we performed a standard spike-triggered covariance (STC)
analysis [S6]. Since the models do not produce spikes, the STC matrix for the models was computed by considering
the contribution of every bin and weighing it by the model output for that bin. This is analogous to spike-triggering,
which weighs spike-containing bins with a value of 1 and all other bins with a value of 0.

The STC analysis limits itself to the study of the second-order statistics of the stimulus after removing the mean,
and thus focuses only on the sections of stimulus space that were most successful in causing a response from the cells
(or the models). STC is especially sensitive to nonlinearities that may exist in the pooling of information from different
spatial locations [S6]. Moreover, the eigenvalues and eigenvectors of the STC matrix can be related to linear filters in
a multi-filter LN model [S6]. These features make it appealing as an alternative way to assess the improvement of the
models in the successive stages.

The topmost graph shows the full eigenvalue spectrum for the LN model. Only those eigenvalues matter that are
significantly larger or smaller than expected. Thus the central column shows exclusively the low-end (blue dots) and
high-end (red dots) tails of the spectrum. Each row corresponds to a different model; the last row corresponds to the
data. To the sides, the eigenvectors for the most significant eigenvalues are plotted (left, low-end; right, high-end;
the corresponding eigenvalues are highlighted by orange circles). These vectors, being representations of the stimulus
space, are best displayed as two-dimensional space-time surface plots, akin to receptive fields (red hue, positive values;
blue hue, negative values). An improvement in the models is reflected in how much the eigenvalues and eigenvectors
of their STC analysis match those of the data. In most cases, such as in this example, this improvement is evident
from LN to LNSN, to LNSNF. Beyond LNSNF, the eigenvalues and eigenvectors do not change much. In contrast,
the explained variance shows that the improvement continues through to LNFSNF and LNFDSNF (Figure 2C,D),
indicating a limitation of the STC analysis that exploits only the second order stimulus statistics.



Supplemental Experimental Procedures

Electrophysiology

We isolated the retina of a larval tiger salamander (Ambystoma tigrinum) in the dark, and placed a piece
(2-4 mm in diameter) on a flat array of 61 extracellular electrodes with the ganglion cell (GC) side down.

The retina was superfused with oxygenated Ringer’s medium (in mM: NaCl, 110; NaHCO3, 22; KCl, 2.5;
MgCl2, 1.6; CaCl2, 1; and D-glucose, 10; equilibrated with 95% O2 and 5% CO2 gas) at room temperature.

The electrode array recorded the extracellular signals from GCs, while the photoreceptors were visually
stimulated [S7, S8]. A computer stored the waveform of the signal from each electrode, sampling them at

10 kHz. Further offline processing with custom software extracted the spike trains for the individual GCs
[S9]. In particular, we discarded any spike train with inter-spike intervals of less than 4 ms because it likely

represents multi-unit activity [S10].

We made intracellular recordings from bipolar cells (BCs) using a sharp glass electrode filled with 2 M

potassium acetate and 3% Rhodamine Dextran 10,000 MW (final impedance 150–250 MΩ). Under infrared

illumination, the electrode was blindly inserted into various cells until one with the response characteristics
matching those of BCs was found [S11]. To measure the projection from individual BCs to their downstream

GCs, the intracellular electrode was also used to stimulate the BCs directly by injecting current in current-
clamp mode (Figure S6A) [S12, S13].

Visual stimulation

We stimulated the isolated retina using a gamma-corrected cathode-ray tube monitor (DELL M783s)
that produced white light in the photopic regime (approximately 1012 photons cm−2 s−1). The stimulus

consisted of a 1-dimensional array of adjacent bars 66 µm in width (Figure S2A), which corresponds

approximately to the size of a dendritic field of BCs [S14, S15, S16]. Their gray intensities changed
simultaneously, independently, and randomly with a refresh rate of 60 Hz. These intensities were drawn

from a Gaussian distribution or from a binary black-or-white distribution. The projected image was focused
on the photoreceptor layer and covered the entire retinal piece under study. The length of this random

sequence varied between a few minutes and a few hours. The data collected in this manner constituted the
stimulus for the training data set. Interleaved with the stimulus described above were a series of 60 s-long

identical sequences with the same flickering bar structure and statistics. The number of repetitions ranged
from 8 to 58. These repeated sequences comprised the stimulus for the testing data set.

We chose the white noise stimuli because of the convenience to generate a large unbiased ensemble
to achieve efficient system identification. Because the nervous system is nonlinear, plastic, and dynamic,

however, the response models will need to be adjusted if one moves from one ensemble to another, such as
natural stimuli. It will be an interesting research direction for the future to develop models with multi-scale

dynamics that generalize better to cover the retinal responses under a wider stimulus space.



Data selection

The raw data set contained about 200 retinal GCs from 6 isolated retinas. Of those, 30 well-isolated GCs

were deemed appropriate for the subsequent modeling analyses according to the following three criteria:

1. Constant firing rate over an extended period of time, preferably over an hour, with more than 2,000
spikes in total.

2. Clear response to the stimulus, not simply spontaneous firing, so the spike-triggered average clearly
reveals receptive field structure.

3. No sudden changes in response to the repeated stimulus sequences.

This selection of data was done entirely before starting to fit or evaluate the models. It should thus introduce

no bias as to whether the cells chosen are especially suited to the specific models examined. Although
imposing a lower limit on the total number of spikes and requiring a clear receptive field center may be

biasing the selection toward certain cell types, these requirements were necessary for the gradient ascent
algorithm to converge. The only goal of the selection was to provide high quality data for the model fitting

process. No normalization or other post-processing was performed on the recorded data.

Cell-type classification

We identified the cell type from the flickering bar data as described previously [S17]. Briefly, we examined
the shape of the nonlinearity associated with the most significant eigenvalue of the spike-triggered

covariance matrix. The cells were then classified into four types (Figure 2D), according to how they respond
to changes in luminance at their receptive field centers:

1. ON cells, which increase their activity only with an increase in luminance;

2. ON-off cells, which increase their activity with both an increase and a decrease in luminance, but
biased towards ON;

3. on-OFF cells, which increase their activity with both an increase and a decrease in luminance, but

biased towards OFF; and

4. OFF cells, which increase their activity only with a decrease in luminance.

For the population analysis in Figure 4, the first two are grouped as ON types, and the last two as OFF types.

Receptive field analysis

We used stimulus ensemble statistical techniques (“reverse correlation” methods) to calculate the spatio-

temporal receptive fields. In the case of GCs, we computed a spike-triggered average (STA) of the stimulus
(Figures 3C, 6C, 7A and S6B) [S7, S18]. The STA is the average over all spikes of the visual stimulus that

occurred in a brief interval before the spike. It is generally indicative of what stimulus makes the cell fire
action potentials. Intracellular BC recordings and model outputs do not have spikes but vary continuously



in their response. In this case, we computed the reverse correlation of the response, namely the average of
the stimulus before each time bin, weighted by the response value for that bin (Figures 6C, 7A and S6B)

To determine the latencies of center and surround regions in a spatio-temporal receptive field (Fig-
ure 6C,D), we first computed the latency of the peak at each spatial location and then averaged these

numbers, weighted by the peak amplitude, separately over the regions with positive and negative amplitude.
To characterize the spatial profile (Figure 7B), we averaged the spatio-temporal receptive field over all time

points between the center and surround peak latencies. The zero-crossing radius was then obtained by linear
interpolation of the data points.

Projective field analysis

We analyzed the data from simultaneous BC-GC recordings similarly as in [S12, S13]. In brief, the

projection strength was first calculated for each BC-GC pair as follows:

projective weight =
Nd −Nh

Nd +Nh
, (S1)

where Nd and Nh are the total number of spikes fired by the GC when the depolarizing and hyperpolarizing

current was injected into the BC, respectively. To obtain the BC’s projective field, these weights were then
plotted as a function of the distance from the BC to the GCs (Figures 7B and S6C). The BC-GC distance

was estimated from their receptive field centers mapped by a randomly flickering checkerboard stimulus.
The spatial profile of the projective field was then characterized by the zero-crossing radius (Figure 7D).

We also ran a χ2 test to examine if the current injected into a BC affected the spiking response of a GC:

χ2 =
(Nd − N̄)2

N̄
+

(Nh − N̄)2

N̄
, (S2)

where N̄ = (Nd + Nh)/2 is taken as the predicted number of spikes under the null hypothesis of no
projection. Together with other requirements on the GC data, this reduced the data set to 14 BC-GC pairs

(from 6 BCs, each projecting to 1–4 GCs) for the modeling analyses. As before, the selection of these cell
pairs was done entirely before fitting the models.

Model formalism

We employed the cascade model framework [S19, S20] and progressively extended its complexity (Fig-
ure 1), from the linear–nonlinear (LN) model to the linear–nonlinear–feedback–delayed–sum–nonlinear–

feedback (LNFDSNF) model. Unlike in many other applications of machine learning, the goal here is not
improved data fitting using arbitrary functions, but an interpretation of the fitting function itself in terms of

biological structure. Therefore we chose as a reference model not the best existing mathematical functions

for response prediction, but the LN model, which lends itself to developing increased biological realism.
In this process we began by splitting the retina into two layers with bipolar cell modules (BCMs) as the

spatial subunits. Then we introduced local feedback circuits and time delays. Figure 1G summarizes the



number of free parameters for each component of the final cascade. Note that the LN model has the most
free parameters (186 in L and 1 in N) among the models we tested.

In the following, the input and output of any stage are denoted as x(t, i) and y(t, i), respectively, where
the time t is binned at 1/60 s and i represents discrete spatial locations. In all models, a modeled GC covered

a spatial window of 2.05 mm (31 stimulus bars).

Linear filters (“L” in LNFDSNf):

For modeling temporal processing, we used discrete time infinite impulse response (IIR) filters. This was

essential to speed up the simulations required in fitting the model. The IIR filters were implemented with 6
free parameters at each spatial location to produce a biphasic function in time (see Figure 3A for example).

The 6 numbers correspond to the amplitudes, timescales, and temporal locations of each of the two phases.
This results in a total of 186 free parameters in this stage for the LN model where the linear filters of a

modeled GC covered the entire 31 stimulus width. In contrast, all the other models employing a BCM have
only 42 free parameters here because the space is tiled by identical BCMs, each covering 7 stimulus bars

and overlapping with its nearest neighbor over 6 stimulus bars.
The detailed implementation of the IIR filters was as follows: The output of the BCM at location i was

computed as (Figure S1A)

y(t, i) =

3∑
j=−3

y+j (t, i+ j) + y−j (t, i+ j), (S3)

where y+j (t, i+j) and y−j (t, i+j) are the outputs of the time-warped second-order IIR filters that respectively

represent the positive and negative lobes of the BCM temporal processing at spatial location i+j. These IIR
filters are identical in form, each with 3 free parameters (amplitude α∗

j , timescale β∗
j , and temporal location

δ∗j with “∗” being either “+” or “−”), and written as follows:

y∗j (t, i+ j) = (1− {δ∗j })Y ∗
j (t− ⌊δ∗j ⌋, i+ j) + {δ∗j }Y ∗

j (t− ⌊δ∗j ⌋ − 1, i+ j), (S4)

Y ∗
j (t, i+ j) = α∗

j x(t, i+ j) + 2β∗
j Y

∗
j (t− 1, i+ j)− β∗

j
2 Y ∗

j (t− 2, i+ j), (S5)

where α+
j ≥ 0, α−

j ≤ 0, β∗
j ≥ 0 and δ∗j ≥ 0. The Eq.S4 represents the time-shifting of Y ∗

j (t, i + j) by the

amount δ∗j (Figure S1B), where the floor ⌊δ∗j ⌋ is the largest integer not greater than δ∗j , and the fractional
part {δ∗j } = δ∗j − ⌊δ∗j ⌋. The Eq.S5 is the difference equation of the IIR filter with the feed-forward filter

coefficient α∗
j and the feedback filter coefficients 2β∗

j and −β∗
j
2 (Figure S1C).

Preliminary runs confirmed that the parameterization of linear filters as in Eqs.S3–S5 is appropriate,

even though the free parameters themselves do not have direct biological interpretations: A point-wise fit of
the BCM linear filters (together with other parameters simultaneously) resulted in very similar outcomes.

The point-wise fits, however, tended to overfit as the models became more complicated or as the amount of
data was decreased. In contrast, this tendency was not observed when using the 6-parameter IIR filters.



BCM nonlinearity and feedback (the first “NF” in LNFDSNF):

In the LNSN model, we used a point-wise static nonlinearity (21 free parameters) for the BCM output (the

first “N” in LNSN; Figure 4). In the other models, we approximated the BCM nonlinearity using a half-wave
rectifier with a free threshold location θ (Figure S1D), implemented together with the feedback kernel h(t)

(Figure S1E) as follows:

y(t) =

0, if z(t) ≤ θ

z(t)− θ, otherwise,
(S6)

z(t) = x(t) +
∑
s≥0

h(s) y(t− s− 1). (S7)

The spatial index i is omitted for clarity. We parameterized h(t) to achieve higher temporal resolutions at
shorter times (7 free parameters; Figure 5). Specifically, the value of the feedback function at the first time

bin was a free parameter, the second and third bins were another, the next three were another, and so on,
giving a square root time dependence for the resolution.

Delay function (“D” in LNFDSNF):

We assigned the delays di independently to each BCM, resulting in 25 more free parameters (i = 4, . . . , 28;

Figure 6). When the delay d was not a multiple of the stimulus sampling interval, this required interpolation
of the input signals x(t) as in Eq.S4:

y(t) = (1− {d})x(t− ⌊d⌋) + {d}x(t− ⌊d⌋ − 1), (S8)

where ⌊d⌋ and {d} are the integer and fractional part of d as measured in stimulus intervals (Figure S1F).

GCM spatial pooling (“S” in LNFDSNF):

Spatial pooling of the GCM is formulated as a weighted sum of the inputs x(t, i) across BCMs (i =

4, . . . , 28; Figure S1G):
y(t) =

∑
i

wi x(t, i). (S9)

This results in a pooling function wi with 25 free parameters (Figure 3B), with which a modeled GC covered
a spatial window of 2.05 mm (31 stimulus bars).

GCM nonlinearity and feedback (the second “NF” in LNFDSNF):

We used Eqs.S6 and S7 for the GCM nonlinearity and feedback. In all models but LN, however, we used

a fixed threshold θ = 0 because the GCM nonlinearity proved very hard to fit as it did not converge.
This function is nevertheless compatible with previous studies [S18]. The GCM feedback kernel was

parameterized with 7 free parameters as in the BCM feedback (Figure 5).



Model fitting

To fit the model parameters, we wrote C++ code and ran it on the training data set for each of the 30 select

GCs. The code was compiled and executed in Harvard University’s Odyssey computer cluster and on a
single computer with an NVIDIA Tesla C1060 card using the NVIDIA CUDA library.

For computing purposes, time was divided into a succession of identical bins. The data spike train was
then represented as the number of spikes that was recorded in each time bin, and the output of the models

was treated analogously. The objective function of the fitting algorithm was the fractional variance of the
data spike train that is explained by the model output [S21, S22]:

explained variance = 1−
∑

t(nt − rt)
2∑

t(nt − n̄)2
. (S10)

Here the sums are over all time bins, nt is the number of data spikes in bin t, rt is the output of the model in
bin t, and n̄ is the average spike count per bin of the data. The explained variance reaches its maximum of

1 in the case of an exact agreement between the two binned sequences, and is around 0 or less in the case of
unrelated sequences. The bin size for the calculations was 1/60 s, which captures most of the dynamics of

GC light responses in the amphibian retina [S10, S23]. Because the explained variance depends on the bin
size and differs from cell to cell, the absolute values are not as important as the relative change in moving

from one model to the other (Figure 2C,D). Specifically, the ratio of the variance explained by any given
model to that of the LN model allows for a comparison of model performance across cells.

The explained variance in Eq.S10 is directly related to the signal power explained, that is, the part of the
total power explained by the model that excludes the noise power [S21, S24]:

signal power explained
explained variance

=
total power

signal power
= 1 +

noise power
signal power

. (S11)

The total power is the variance of the observed spike train data (peri-stimulus time histogram; PSTH),
the signal power is the variance of the deterministic part of the data (mean PSTH across trials under the

assumption of additive independent and identically distributed noise), and the noise power is the variance of
stochastic part of the data (trial-to-trial variability). The noise power is much smaller than the signal power

in our data set (e.g., Figures 2A,B and S2B) and thus the signal power explained is nearly equal to the
explained variance.

For each model on each GC, a free parameter search was carried out to maximize the objective function.
Whereas many machine learning problems are solved by methods of stochastic gradient ascent, we chose

a deterministic algorithm, because (1) the data set was small enough to be evaluated in its entirety at each

step of the search and (2) the computation of gradients relative to the parameters is expensive, owing to
the feedback loops in the networks. The Polak-Ribière variant of conjugate gradient ascent [S5] determines

which direction in parameter space should be explored next. The code then performed a line minimization
along that direction. The process of direction choosing and line minimizing was repeated iteratively until the

objective function ceased to improve significantly. Each line minimization was accomplished in two stages.
The first stage was “brute force”: it proceeded by sampling 100 points spanning a domain of a carefully



determined length. This length was initially determined by our prior knowledge on the rough orders of
magnitude of the various free parameters. Such choice of domain was not prescriptive, as the code would

“zoom out” if it found that the explained variance near the edges was not low enough. In particular, it would
zoom out if the maximum was too close to the edges. In addition, the code would “zoom in” if the points

around the maximum did not approximate a parabola. The second stage of the line minimization employed
the Brent’s algorithm to narrow in on the exact optimal location along that line. This algorithm ran for a

maximum of 20 iterations, but it rarely needed that many to converge.
Empirically, the multi-dimensional search worked better if the Polak-Ribière algorithm acted on

subspaces of comparable free parameters (examples are the subspace of filter amplitudes, that of pooling

weights, and that of delays) and then cycled through the subspaces iteratively. This is in contrast to running
the algorithm on all free parameters simultaneously. Even though our subspace approach slowed down

the search by forcing it to take a zigzag-like path through parameter space, this substantially improved
convergence. On each subspace, the Polak-Ribière algorithm was allowed to run for at most 5 iterations.

This number is low, but it is not so important as each subspace was revisited many times as we cycled
through the subspaces. The number of cycles was fixed so that each subspace was visited 100 times. This

number was deemed to be enough by observing that there were only minimal changes in the values of the
free parameters (and in the objective function) after about 20 iterations.

We selected the initial conditions of the free parameters as follows (Figure S5). For the BCM filter and
GCM pooling weights, the initial conditions were very loosely based on the receptive field of the cell in

question, but were still quite different from the final values. For the nonlinearities, feedback functions, and
delays, the initial conditions bore no resemblance to the final values of the parameters. If the search started

in an approximately parabolic region, the convergence of the search algorithm is guaranteed [S5]; however,
the initial brute force stage of the line minimization may fail. Therefore, after the runs were finished, all

the line searches carried out were roughly inspected by eye to check that their shapes had a single clear
maximum. To test for convergence, we also performed various kinds of numerical tests (Figure S5).

The field of machine learning develops fast and we acknowledge that there are many other approaches to
large-scale smooth nonconvex optimization problems, such as automatic differentiation methods, stochastic

gradient descent, and online preconditioner. We have not, however, tested such algorithms in this study.

Model assessment

Model performance was assessed by measuring the fractional variance of the GC firing rate explained by
the model’s output (Figure 2C,D), using Eq.S10 in a manner similar to that for model fitting. To avoid any

type of over-fitting concerns, this was done on a separate testing data set. The testing data set included
many repeats of the identical flicker sequence. The model’s output was compared to the average firing rate

observed over all these trials.
Note that the present model predicts only the trial-averaged firing rate, and makes no statement about

the noise that leads to fluctuations from trial to trial. In fact, the experimental variability of firing was not
the limiting factor in these model fits. Even with optimal parameter settings, the model showed systematic

deviations from the data that exceeded the noise (see e.g., Figure 2B). More sophisticated circuit models



will be able to narrow that gap, at which point it will become useful to engage an explicit formalism for
noise sources and how they affect the firing of ganglion cells.

For the data from the simultaneous BC-GC recording, the models did not always converge from all
different initial conditions used, possibly due to small data sizes. In such cases, we selected the fitting results

as the parameter set that produced the highest explained variance on the training data set. This selection was
done entirely before analyzing the intracellular recording data, so no bias was introduced in the process.
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