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Abstract

In many sensory systems the neural signal is coded by the coordinated response of hetero-

geneous populations of neurons. What computational benefit does this diversity confer on

information processing? We derive an efficient coding framework assuming that neurons

have evolved to communicate signals optimally given natural stimulus statistics and meta-

bolic constraints. Incorporating nonlinearities and realistic noise, we study optimal popula-

tion coding of the same sensory variable using two measures: maximizing the mutual

information between stimuli and responses, and minimizing the error incurred by the optimal

linear decoder of responses. Our theory is applied to a commonly observed splitting of sen-

sory neurons into ON and OFF that signal stimulus increases or decreases, and to popula-

tions of monotonically increasing responses of the same type, ON. Depending on the

optimality measure, we make different predictions about how to optimally split a population

into ON and OFF, and how to allocate the firing thresholds of individual neurons given

realistic stimulus distributions and noise, which accord with certain biases observed

experimentally.

Author summary

The brain processes external stimuli through special receptor cells and associated sensory

circuits. In many sensory systems the population of neurons splits into ON and OFF cells,

namely cells that signal an increase vs. a decrease of the sensory variable. This happens in

brains from worm to man, and in the sensing of temperature, odor, light, and sound.

Here we analyze the possible benefits of “pathway splitting” using information theory. We

derive the most efficient split of a pathway into ON and OFF neurons and predict the

response range of each neuron type as a function of noise and stimulus statistics. Our the-

ory offers insight into this ubiquitous phenomenon of neural organization and suggests

new experiments in diverse sensory systems.
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Introduction

The efficient coding hypothesis states that sensory systems have evolved to optimally transmit

information about the natural world given limitations on their biophysical components and

constraints on energy use [1]. This theory has been applied successfully to explain the structure

of neuronal receptive fields in the mammalian retina [2, 3] and fly lamina [4, 5] based on the

statistics of natural scenes. Similar arguments have been made to explain why early sensory

pathways often split into parallel channels that represent different stimulus variables, for exam-

ple different auditory waveforms [6], or local visual patterns [7]. Even neurons that encode the

same sensory feature often split further into distinct types. One such commonly encountered

diversification is into ON and OFF types: ON cells fire when the stimulus increases and OFF

cells when it decreases. This basic ON-OFF dichotomy is found in many modalities, including

vertebrate vision [8], invertebrate vision [9], thermosensation [10], and chemosensation [11].

Furthermore, among the neurons that encode the same sensory variable with the same sign,

one often encounters distinct types that have different response thresholds, for example,

among touch receptors [12] and electroreceptors [13]. The same principle seems to apply sev-

eral synapses downstream from the receptors [14], and even in the organization of the motor

periphery, where motor neurons that activate the same muscle have a broad range of response

thresholds [15]. In the present article we consider this sensory response diversification among

neurons that represent the same variable and explore whether it can be understood based on a

nonlinear version of efficient population coding.

One reason why the ON and OFF pathways have evolved may be to optimize information

about both increments and decrements in stimulus intensity by providing excitatory signals

for both [16]. For instance, if there were only one ON cell, then such a cell would need high

baseline firing rate to encode stimulus decrements, which can be very costly. We, and others

have previously addressed the benefits for having ON and OFF cells in a small population of

just two cells [17–19]. However, it remains unclear how a population of many neurons could

resolve this issue by tuning their thresholds so that they jointly code for the stimulus. Since

ON and OFF neurons often exhibit a broad distribution of firing thresholds [12–15], an

important question is thus, what distribution of thresholds yields the most efficient coding.

Here we study optimal information transmission in sensory populations comprised of differ-

ent mixtures of ON and OFF neurons, including purely homogeneous populations with neu-

rons of only one type, e.g. ON, that code for a common stimulus variable by diversifying their

thresholds.

Traditionally, efficient population coding has either optimized linear features in the pres-

ence of noise [2, 3, 20, 21], or nonlinear processing in the limit of no noise or infinitely large

populations [22–25]. We simultaneously incorporate neuronal nonlinearities and realistic

noise at the spiking output, which have important consequences in finite populations of neu-

rons, as encountered biologically. We develop the problem parametrically in the neuronal

noise and the distribution of stimuli that the cells encode, allowing us to make general predic-

tions applicable to different sensory systems.

What quantity might neural populations optimize? We consider two alternative measures

of optimal coding that are in common use [22, 26–30]: first we maximize the mutual informa-

tion between stimulus and response without any assumptions about how this information

should be decoded, and second we optimize the estimate of the stimulus obtained by a linear

decoder of the response. The two criteria lead to different predictions both on the optimal

ON/OFF ratio and the distribution of optimal thresholds. When constraining the maximal fir-

ing rate of each cell, we find that counter to our expectations the mutual information is identi-

cal for any mixture of ON and OFF cells once the thresholds of all cells are optimized. This
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result is independent of the shape of the stimulus distribution and the level of neuronal noise.

However, the total mean spike count is the lowest for the population with equal numbers of

ON and OFF cells, making this arrangement optimal in terms of bits per spike. Optimizing the

linear decoder requires determining not only the cells’ thresholds, but also the decoding

weights in order to minimize the mean square error between the stimulus and its estimate.

Under this criterion, the optimal ON/OFF mixture and cells’ thresholds depend on the asym-

metries in the stimulus distribution and the noise level, and can account for certain biases

observed experimentally in different sensory systems. We also make distinct predictions for

the optimal distribution of thresholds under the two optimality measures, noise level and stim-

ulus distributions, providing insight into the diverse coding strategies of these populations

across different sensory modalities and species where these differences are encountered.

Results

Population coding model

We develop a theoretical framework to derive the coding efficiency and response properties of

a population of sensory neurons representing a common stimulus (Fig 1A). We specifically

consider populations with responses of opposite polarity, ON and OFF, which increase or

decrease their response as a function of the common sensory variable; thus, our theory applies

to any sensory system where ON and OFF pathways have been observed, for example, heat-

activated and cold-activated ion channels in thermosensation [31, 32], mechanosensory neu-

rons [33, 34], or retinal ganglion cells which code for the same spatial location and visual

Fig 1. Neuron model and population coding framework. A. Framework schematic. A stimulus s from a probability

distribution p(s) is encoded by the spiking responses of a population of ON (red) and OFF (blue) cells. We optimize

the cells’ nonlinearities by maximizing the mutual information between stimulus and spiking response. B. Each cell is

described by a binary response nonlinearity ν with a threshold θ and maximal firing rate νmax. During a coding

window of fixed duration T the stimulus is constant and the spike count k is drawn from a Poisson distribution with a

mean rate ν. C. When measuring coding efficiency using the mutual information between stimulus and spike count

response, the neurons’ thresholds can be interpreted as quantiles of the original stimulus distribution, thus mapping an

arbitrary stimulus distribution p(s) into a uniform distribution (four thresholds shown).

https://doi.org/10.1371/journal.pcbi.1007476.g001
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feature with different thresholds [18]. As a special case, we consider populations of neurons

with a single polarity, which increase their response as a function of the common sensory vari-

able, for example, olfactory receptor neurons that code for the same odor at different concen-

trations [35–37]. Each model neuron encodes information about a common scalar stimulus

through the spike count observed during a short coding window. The duration of this coding

window, T, is chosen based on the observed dynamics of neuronal responses, which is typically

in the range of 10-50 ms [28, 38]. Neuronal spike counts are stochastic and their mean is mod-

ulated by the stimulus through a discrete response function with a finite number of responses.

Discretization in neural circuits occurs on many levels [39]; for example, previous experimen-

tal studies have found that sensory neurons use discrete firing rate levels to represent continu-

ous stimuli [4, 27, 40]. Furthermore, theoretical work has shown that the optimal neuronal

response functions are discrete under different measures of efficiency [27, 41–43].

The best way to discretize a neural signal depends on many factors, including noise, stimu-

lus statistics and biophysical constraints [39]. Under the constraint of short coding windows

encountered in many sensory areas, optimizing a single response function results in a discreti-

zation with two response levels, i.e. a binary response function [27, 28, 41–43]. Binary response

functions also offer a reasonable approximation of neural behavior in several systems [28, 44,

45]. Therefore, we assumed that ON (OFF) neurons fire Poisson spikes with an average mean

count νmax whenever the stimulus intensity is above (below) their threshold θi, and zero other-

wise, i.e. νi(s) = νmax Θ(s − θi) for ON neurons and νi(s) = νmax Θ(θi − s) for OFF neurons

(Fig 1B), where Θ is the Heaviside function.

Maximal mutual information for mixtures of ON and OFF neurons

What should be the number of ON vs. OFF cells and the distribution of their firing thresholds

in a population of neurons that optimally represent a given stimulus? To answer these ques-

tions, we first maximize the Shannon mutual information between stimulus and population

response, in search of a simple efficient coding principle that could explain ON-OFF splitting

and, more generally, threshold diversification. We perform the optimization while constrain-

ing the expected spike count R = νmaxT for each cell. Biophysically, such a constraint on the

maximal firing rate arises naturally from refractoriness of the spike-generating membrane. We

have analytically proven the following theorem (see Methods):

Equal Coding Theorem. For a population of any number N of non-overlapping ON and

OFF Poisson neurons coding a one-dimensional stimulus in a fixed time window T by binary

rate functions with maximal firing rate νmax, the mutual information is identical for all ON/

OFF mixtures when the thresholds are optimized, for all N, νmax and stimulus distributions.

To prove this, we consider a mixed population of ON and OFF cells with non-overlapping

responses where the ON thresholds are larger than the OFF thresholds. To calculate the infor-

mation conveyed by this entire population, we imagine first observing only the ON cells, and

in a second step the remaining OFF cells. If one of the ON cells fired a spike, we know the stim-

ulus is in that cell’s response range, and therefore we do not learn additional information from

observing the OFF cells. If none of the ON cells fired, we gain additional information from

observing the OFF cells. One can make the same argument if the remaining cells are all ON

cells, or indeed any other mixture. Careful consideration shows that the maximal information

gained from that remaining cell population is the same whether they are ON cells or OFF cells

(see Methods and S1 Text). Hence, the homogeneous and any mixed ON-OFF population

achieve the same maximal information. Numerical simulations for populations with up to

ten cells show that the maximal information is indeed achieved in the case when the ON and

OFF cells do not overlap, so that all ON thresholds are bigger than all OFF thresholds
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(see Methods). Therefore, from here onwards we consider the case with non-overlapping ON

and OFF cells.

The value of the maximal information depends on the expected spike count, R = νmaxT.

We introduce the noise parameter q = e−R, which ranges from q = 0 in the noiseless limit of

high firing rate, and q = 1 in the high noise limit of low firing rate. We show that for any

ON-OFF mixture (including the homogeneous with only ON cells), the maximal information

achieved with optimized thresholds is (Fig 2A, see Methods)

I ¼ log ð1þ Ne� HqÞ ð1Þ

where we have defined Hq� −1/(1 − q)[(1 − q) log(1 − q) + q log(q)], which has a natural inter-

pretation as the noise entropy in the large population regime defined below. We further

Fig 2. Mutual information when constraining the expected spike count. A. The mutual information between

stimulus and response for any mixture of N ON and OFF cells is identical when constraining the expected spike count,

R. B. The optimal threshold intervals for all possible mixtures of ON (red) and OFF (blue) cells in a population of N = 6

cells that achieve the same mutual information about a stimulus from an arbitrary distribution p(s). C. The optimal

threshold intervals for the equal ON-OFF mixture in a population of N = 6 cells and different values of R (equivalently,

noise); see also D. Top: low noise (RN!1); middle: intermediate noise (RN = 1); bottom: high noise (RN! 0). D.

The optimal threshold intervals as a function of 1/RN. E. The mean spike count required to transmit the same

information (see A) by populations with a different fraction of OFF cells (α), normalized by the mean spike count of

the homogeneous population with α = 0. The different curves denote RN = {0.1, 1, 5, 100}.

https://doi.org/10.1371/journal.pcbi.1007476.g002
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ensured that the conclusion of equal coding holds in a population of two cells independent of

the Poisson noise model we assumed, which has zero noise when the the firing rate of a neuron

is zero. Specifically, we investigated information transmission introducing a spontaneous fir-

ing rate under the same Poisson model, as well as empirically measured sub-Poisson noise

from salamander retinal ganglion cells [17, 28] (see S1 Text).

The above Eq 1 allows us to exactly compute the maximal information that would be

reached by a population of neurons as a function of the number of neurons N and the level of

noise q assuming optimality, without resorting to expensive numerical calculations [46]. Even

if real biological systems do not perform optimally, this quantity could be used as an upper

bound for the largest possible information that the system could transmit under the appropri-

ate constraints. In the noiseless limit, R!1 (i.e. q = 0), where the neurons are deterministic,

I reaches its upper bound I = log(N + 1). The effect of noise is most prominent when R is of

order 1/N, so that the total spike count RN is of order 1, implying that the signal-to-noise of

the entire population is of order 1. We call this the high noise regime, and here we obtain

I! log(RN/e + 1), where e denotes exp(1).

Optimal distribution of thresholds

We next asked what distribution of thresholds in the population of ON and OFF cells achieves

this maximal mutual information. In the case of a discrete rate function, we can replace θi by

the corresponding cumulative threshold (fraction of stimuli below threshold), which essen-

tially maps the stimulus distribution into a uniform distribution from 0 to 1 (Fig 1C). Since the

stimulus dependence enters only through these values, the maximal mutual information is

independent of the stimulus distribution p(s), provided that the stimulus cumulative distribu-

tion is continuous. Instead, the information depends on the areas of p(s) between consecutive

thresholds. It is therefore useful to define the optimal threshold intervals pi ¼
R yiþ1

yi
ds pðsÞ

where the neurons’ thresholds are ordered θ1� . . .� θN (and we define the special θ0 = −1
and θN+1 =1). We find a surprisingly simple structure for the optimal pi (Fig 2B and 2C). The

optimal thresholds divide stimulus space into intervals of equal area, which depend on the

noise level, q,

pi ¼ p ¼
Z yiþ1

yi

ds pðsÞ ¼
1

N þ eHq
ð2Þ

for all i, except for the two ‘edge’ intervals,

pedge ¼
Z y1

� 1

ds pðsÞ ¼
Z 1

yN

ds pðsÞ ¼
p

1 � q
; ð3Þ

and the ‘silent’ interval that separates the ON and OFF thresholds, p0 = 1 − (N − 2)p − 2pedge

(see Methods). Note that for the homogeneous population, p0
0
¼ 1 � ðN � 1Þp � pedge. We call

this optimal threshold structure the infomax solution.

We consider several limiting cases: first, a large population N� 1 and maximal firing rate

per neuron R, which is much larger than 1/N, i.e. 1 � q ¼ Oð1Þ. We call this the large popula-

tion regime. In this regime, pedge = p = p0 = 1/(N + 1), so the N thresholds divide stimulus

space into N + 1 equal intervals (Fig 2C top, Fig 2D). In this large population regime, we can

rewrite the optimal thresholds as a continuous function of cumulative stimulus space; we

replace θi with θ(x), where x = i/N is the threshold index between 0 and 1. Then the optimal

thresholds equalize the area under the stimulus density, xðyÞ ¼
R y
� 1

pðy0Þ dy0. Therefore, the

population of cells achieves ‘histogram equalization’ in that it uses all the available response

Functional diversity among sensory neurons from efficient coding principles
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symbols at equal frequency, as has been shown before for a single cell with many discrete sig-

naling levels in the limit of no noise [4, 47]. We point out that in this case, the quantity Hq in

Eqs 1 and 2 is the entropy of p(k) = (1 − q)qk for k = 0, 1, 2. . . and can be interpreted as the

response entropy conditioned on the stimulus.

In contrast, when the noise is high so that RN! 0, the system performs redundant coding

so that each pi is infinitesimally small and the only two substantial threshold intervals are the

edge intervals pedge = 1/e, and the silent interval, p0 = 1 − 2/e, which separates the ON and OFF

thresholds (Fig 2C bottom, Fig 2D). This p0 is the only non-noisy response state where the fir-

ing rate of each cell is zero. This implies that the optimal solution is to place all ON thresholds

at roughly the same value, and similarly all OFF thresholds at another value (Fig 2C bottom).

This solution maximizes redundancy across neurons in the interest of noise reduction [2, 48,

49], consistent with various experimental and theoretical work [2, 48, 49]. Interestingly, for a

small population of two cells, we (and others) have previously shown that in the presence of

additional input noise before the signal passes through the nonlinearity, this ‘redundant cod-

ing’ regime exists for larger range of noise values [17–19].

In summary, we have derived the total mutual information and distribution of optimal

thresholds in a population of binary neurons coding for the same stimulus variable for any

stimulus distribution and noise level. While our results agree with previous work in the limit

of no noise and an infinite population, we make unique and novel predictions—notably the

surprisingly regular structure of the threshold intervals and invariance in information trans-

mission for any ON/OFF mixture—in populations of any number of neurons and with sizable

noise relevant for majority sensory systems.

Optimizing information per spike predicts equal ON/OFF mixtures

Our analysis so far showed that maximizing the information equally favors all ON-OFF mix-

tures independent of the noise level, although the exact distribution of population thresholds

at which this information is achieved depends on noise. However, different sensory systems

show dominance of OFF [50], dominance of ON [34, 51], or similar numbers of ON and OFF

[34]. Therefore, we next explored what other criteria might be relevant for neural systems

under the efficient coding framework. We considered that neural systems might not just be

optimized to encode as much stimulus information as possible, but might do so while mini-

mizing metabolic cost. Therefore, for each ON-OFF mixed population achieving the same

total information (Fig 2A), we calculated the mean spike count used to achieve this informa-

tion. In the large population regime, if α denotes the fraction of OFF cells, the mean spike

count per neuron is r(α) = R(α2 +(1 − α)2)/2 (Methods). This mean spike count per neuron is

minimized at α = 1/2, where it is half of the mean spike count for the homogeneous popula-

tion, r(0) = R/2 (Fig 2E). This implies that it is most efficient to split the population into an

equal number of ON and OFF cells. As the noise increases, the benefits of the equally mixed

relative to the homogeneous population decrease (Fig 2E). In the high noise regime, all mix-

tures produce roughly the same mean spike count per neuron of R/e (Fig 2E). Therefore, if a

sensory system is optimized to transmit maximal information at the lowest spike cost, our the-

ory predicts similar numbers of ON and OFF neurons, which is consistent with ON-OFF mix-

tures encountered in some sensory systems [34].

Minimizing mean square error of the optimal linear readout

The efficient coding framework does not specify which quantity neural systems optimize to

derive their structure. Until now, we have used the mutual information as a measure of coding

efficiency because it tells us how well the population represents the stimulus without regard for
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how it can be decoded. An alternative criterion for coding efficiency is the ability of down-

stream neurons to decode this information. A simple biologically plausible decoding mecha-

nism, commonly used in previous studies, is linear decoding [22, 26, 29, 30, 52]. Does this

alternative measure of efficiency generate the same predictions for how sensory populations

coding for the same stimulus variable should allocate their resources to ON vs. OFF neurons?

Here, we examine the accuracy of a downstream neuron that estimates the stimulus value s
using a weighted sum of spike counts ni of the upstream population of neurons with thresholds

θi (Fig 3A)

y ¼
XN

i¼1

wi ni þ w0: ð4Þ

The weights wi, constant w0 and thresholds θi are optimized to minimize the mean square esti-

mation error (MSE).

Accuracy of the optimal linear readout without noise

We first consider the scenario of low noise (q! 0, or equivalently, R!1), in which case the

limitation on the accuracy of the stimulus reconstruction comes solely from the discreteness of

the rate functions of each cell in the population (Fig 3B). Unlike maximizing the information,

when minimizing the MSE both weights and thresholds depend on the stimulus distribution

p(s) (Fig 3).

Interestingly, we find that in this low noise limit, the optimal MSE is proportional to 1/N2

and is the same for all ON/OFF mixtures, including the homogeneous population with all cells

of the same type (Fig 3C and 3D; see Methods). The optimal decoding weights are given by

wi ¼ hsii � hsii� 1 ð5Þ

where hsii are the centers of mass of intervals of p(s) intersected by neighboring thresholds

X

0�j�i

wj ¼

R yiþ1

yi
ds s pðsÞ

R yiþ1

yi
ds pðsÞ

¼ hsii; 1 � i � N ð6Þ

where we have defined θN+1 =1. The optimal thresholds are the average of two neighboring

centers of mass

yi ¼
1

2
ðhsii þ hsii� 1Þ: ð7Þ

The constant term and the stimulus interval not coded by any cell depend on the ON/OFF

mixture (Fig 3C and 3D; Methods). This gives a recursive relationship that from a set of initial

thresholds converges to the optimal solution (see Methods).

To see how this threshold distribution is different than the one predicted by the mutual

information, we first consider the large population regime. As for the mutual information, we

can rewrite the thresholds θi as a continuous function θ(x) of the cumulative stimulus values

x = i/N between 0 and 1. Interestingly, the optimal thresholds equalize not the area under the

stimulus density, as in the case of the mutual information, but the area under its one-third

power

xðyÞ ¼ Z
Z y

� 1

pðy0Þ1=3 dy0 ð8Þ

where Z is a normalization factor. This result has been previously derived in the context of

Functional diversity among sensory neurons from efficient coding principles
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Fig 3. Optimal linear decoding of stimuli. A. Framework schematic. A stimulus s from a probability distribution p(s) is

encoded by the spiking responses of a population of ON (red) and OFF (blue) cells. We optimize the cells’ nonlinearities by

minimizing the mean squared error (MSE) between the original stimulus s and the linearly reconstructed stimulus y from the

spiking response. B. Minimizing the MSE between a stimulus s (black) and its linear estimate y (blue) by a population of (6)

ON and OFF cells, in the absence of noise. We show the optimal weight w1 and the center of mass hsi1 of the first threshold

interval (red dashes). C,D. Any ON-OFF population can achieve the same error with the same set of optimal thresholds and

weights but a different constant, w0. C. 6 ON cells (w0 < 0). D. 3 OFF and 3 ON cells (w0 = 0). E. The optimal thresholds

equalize not the area under the stimulus density (as in the case of the mutual information), but the area under its one-third

power (Eq 8). The optimal thresholds are shown for the Laplace distribution. F. The information maximizing thresholds

partition the Laplace distribution into intervals that code for stimuli with higher likelihood of occurrence (bottom), while

minimizing the MSE pushes thresholds to favor rarer stimuli near the tails of the distribution (top). Threshold distributions

are the same as in E. G. The cumulative optimal thresholds
R yðxÞ
� 1

pðy0Þdy0 (compare to E).

https://doi.org/10.1371/journal.pcbi.1007476.g003
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minimizing the distortion introduced in a pulse-coupled-modulation system due to quantiza-

tion [53] (reviewed in [54]), as well as in the context of neural coding which maximizes the Lp
reconstruction error of the maximum likelihood decoder, of which the mean squared error is

the special case for p = 2 [25].

We invert the relationship in Eq 8 to derive the optimal thresholds θ(x). Since the optimal

MSE depends on the stimulus distribution, from now on we consider the Laplace distribution

p(s) = 1/2 e−|s|, which arises when evaluating natural stimulus distributions [23, 55] and has a

higher level of sparseness than the Gaussian distribution. In this case, the optimal thresholds

become (Fig 3E and 3F; see Methods):

yðxÞ ¼
3 logð2xÞ; x � 1

2

� 3 logð2ð1 � xÞÞ; x > 1

2
:

(

ð9Þ

The thresholds derived from maximizing information are the same except that the pre-fac-

tor is 1 instead of 3, making them less spread out in the tails (Fig 3F). In particular, the largest

thresholds (in magnitude) are ±3log(2N) when optimizing the MSE, three times as large as

in the infomax case, ± log(2N). To highlight the different predictions for the optimal thresh-

olds under the two efficiency measures, we also plot the cumulative optimal thresholds
R yðxÞ
� 1

pðy0Þdy0 (Fig 3G). While the optimal strategy when maximizing the information is to

emphasize stimuli with higher likelihood of occurring, minimizing the MSE of the optimal lin-

ear readout pushes thresholds logarithmically towards relatively rare stimuli near the tails of

the stimulus distribution (Fig 3F and 3G).

Taken together, we conclude that in the absence of noise our theory derives equal perfor-

mance of all ON and OFF mixtures under the two optimality criteria, information maximiza-

tion and minimizing the optimal linear readout. However, a key difference between the two

criteria is the theoretically predicted optimal distribution of thresholds.

Mixed ON/OFF populations in the presence of noise

In biologically realistic scenarios with non-negligible noise, however, we find that mixed ON/

OFF populations show a dramatic improvement of the MSE over predominantly homoge-

neous populations (Fig 4A). For the Laplace distribution we have considered so far, and differ-

ent noise values, we find that the optimal fraction of OFF cells in the population is α = 1/2.

Although there is a unique best ON/OFF mixture, the best linear stimulus reconstruction

achieved by other populations with ON-OFF mixtures closer to the optimal 1/2 mixture is sim-

ilar (i.e. the MSE around α = 1/2 is flat). The worst stimulus reconstruction is achieved by the

homogeneous population with all cells of ones type (all ON or all OFF), which has the highest

MSE. As the noise q decreases (R increases) further, this difference in performance between

the mixed and homogeneous populations becomes quite dramatic, see for example R = 1

(Fig 4A).

In addition to the big difference in coding performance between mixed and homogeneous

populations, incorporating biologically realistic noise also affects the theoretically derived dis-

tribution of optimal thresholds (Fig 4B). While in mixed populations the thresholds are dis-

tributed logarithmically towards relatively rare values at the tails of the stimulus distribution

(Eq 9; see Fig 4B and 4C and Methods), for the homogeneous population the optimal thresh-

olds exhibit a distinct asymmetry. A large fraction of thresholds are distributed linearly as a

function of their index, while the remaining thresholds are distributed logarithmically as
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although the noise has the effect of concentrating the thresholds near more likely stimuli,

increasing the redundancy of the code. Moreover, the smallest threshold for the homogeneous

population is much larger than the smallest threshold for any mixed population, suggesting

that there is a large region of stimuli that is not coded by any cell in the homogeneous case (Fig

4C), which is the reason for the significantly lower MSE.

In summary, using the MSE of the optimal linear decoder as a measure of efficiency can

fundamentally alter our conclusions about how to split a population into ON and OFF cells

and how to distribute the population thresholds to achieve the optimal stimulus reconstruc-

tion. At biologically realistic noise levels, coding by mixed ON-OFF populations is much better

than by a homogeneous population, with qualitatively distinct optimal threshold distributions.

The optimal ON-OFF mixture of the linear readout depends on the

asymmetry in the stimulus distribution

Since the MSE as a measure of efficiency depends on the stimulus distribution, we asked how

the stimulus distribution can affect optimal population coding. The distribution of natural sti-

muli may be asymmetric around the most likely stimulus. For example, the distribution of

contrasts in natural images, and the intensity of natural sounds are indeed skewed towards

more negative values [20, 56–61]. Therefore, we instead consider an asymmetric Laplace distri-

bution pðsÞ / es=t� for s< 0 and pðsÞ / e� s=tþ for s� 0 where we take τ−> τ+. Minimizing the

MSE one finds that the optimal way to divide a population into ON and OFF respects these

stimulus asymmetries. Increasing the negative stimulus bias τ−/τ+ favors more OFF cells (Fig

5A and 5B). The optimal thresholds for these different stimulus biases are best compared in

the cumulative space of stimulus (Fig 5C). Increasing the bias also pushes the thresholds

towards more negative stimulus values, which occur with higher probability than positive

stimuli.

Fig 4. Optimal linear decoding of stimuli with noise depends on the ON/OFF mixture. A. The MSE as a function of the fraction

of OFF cells in the population, α, for a different expected spike count, R. The MSE was normalized to the MSE for the homogeneous

population of all ON cells. The MSE is shown for N = 100 cells and for the Laplace distribution. Symbols indicate the MSE values

realized with the thresholds in B and C. B. The optimal thresholds for the homogeneous population (black) partition the Laplace

stimulus distribution starting with a much larger first threshold than the mixed population with 2/3 OFF cells (blue) and 1/3 ON

cells (red). C. The optimal thresholds for the Laplace distribution for a homogeneous population (black) and a mixed population

with 2/3 OFF cells (blue) and 1/3 ON cells (red). In B and C, R = 1. Note the difference in the optimal threshold distribution between

the mixed ON/OFF and the homogeneous ON population, especially for small x = i/N (logarithmic in blue vs. linear in black).

https://doi.org/10.1371/journal.pcbi.1007476.g004
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At a fixed level of stimulus bias, increasing the noise further accentuates the asymmetry in

the optimal ON-OFF mixture (Fig 5D and 5E). As the noise becomes non-negligible, the opti-

mal thresholds lose the logarithmic spread at the tails of the stimulus distribution and begin to

code for more likely stimuli that occur with a higher probability. At the same time, a larger

region of stimulus values near the median is no longer coded by any cells, i.e. the gap between

ON and OFF thresholds becomes larger (Fig 5F). Had we considered the limit of zero noise or

infinitely large populations as previous studies [22–25], we would not have been able to iden-

tify these differences between the optimal thresholds that result in conditions of biologically

realistic noise and finite populations.

In summary, our theory predicts different optimal ON-OFF numbers at which the lowest

MSE is achieved depending on asymmetries in the stimulus distribution and the noise level.

Indeed in nature, the relative predominance of ON and OFF cells in diverse sensory systems

can be different (Table 1). Therefore, if we know the natural stimulus distribution being

encoded by a population and the bounds on cells’ firing rates, we can predict the optimal ON

and OFF numbers, as well as the response thresholds of the cells and compare them to experi-

mental observations.

Predicting stimulus distributions from experimentally measured

thresholds

Here we propose to reverse our efficient coding framework, and starting from an experimen-

tally measured distribution of thresholds, to predict the distribution of natural stimuli that the

Fig 5. The optimal ON/OFF mixture derived from the linear readout is tuned to asymmetries in the stimulus distribution. A.

The MSE as a function of the fraction of OFF cells (α) normalized to that for the homogeneous population of all ON cells (α = 0).

The MSE is shown for an asymmetric Laplace distribution with varying negative to positive bias −/+, expected spike count R = 1 and

N = 100 neurons. B. The optimal fraction of OFF cells as a function of stimulus bias of the asymmetric Laplace distribution and

R = 1. C. The optimal thresholds for the ON-OFF mixtures (50%, 66% and 75%) in A that yield the lowest MSE, while varying

negative to positive bias −/+ = {1, 2, 4}. D. Same as A but for an asymmetric Laplace distribution with a negative bias −/+ = 2 and

varying R (equivalently, noise). E. The optimal fraction of OFF cells as a function of R for different stimulus bias of the asymmetric

Laplace distribution. F. The optimal thresholds for the ON-OFF mixtures (84%, 70% and any) in D that yield the lowest MSE, while

varying R = {0.02, 0.1,1}.

https://doi.org/10.1371/journal.pcbi.1007476.g005
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thresholds could be optimized to encode (Fig 6A). This would be particularly relevant for sen-

sory systems where the distribution of the sensory variable being encoded is unknown. We

decided to test this approach on odor concentration coding in the olfactory system of Drosoph-
ila larvae given recently published data [37]. The first stage of olfactory processing in Drosoph-
ila larvae is implemented by a population 21 olfactory receptor neurons (ORNs), which code

for a broad space of odorants and concentrations [37]. We hypothesized that these ORNs

might have distributed their thresholds at different concentrations to optimally encode any

particular odor. In the classical efficient coding approach, knowing the distribution of odor

concentrations would allow us to predict the optimal thresholds. In the reversed approach that

we use here, knowing the distribution of thresholds allows us to predict the distribution of

concentrations of a known odor (Fig 6A).

Table 1. List of experimentally measured ON and OFF neuron numbers in different sensory systems.

Sensory system ON/OFF numbers

Primary somatosensory cortex S1 (primate) [34] ON dominance

Secondary somatosensory cortex S2 (primate) [34] ON� OFF

Visual system (insect) [50] OFF dominance

Olfactory system (mammalian, insect) [35, 72, 73] Unknown

Thermosensory system (mammalian, insect) [31, 32] OFF dominance

Mechanosensory system (mammalian) [51] ON dominance

https://doi.org/10.1371/journal.pcbi.1007476.t001

Fig 6. Deriving a distribution of stimulus intensities from experimentally measured thresholds. A. Our efficient coding

framework enables us to predict the optimal distribution of thresholds given a known stimulus distribution. By reversing our

framework, we derive the stimulus distribution from a distribution of measured thresholds assuming optimal coding under the two

optimality criteria. B. Log-log plot of the cumulative distribution of the inverse of thresholds from measured dose-response curves of

the entire population of ORNs in the Drosophila larva olfactory system [37]. This is well described by a power law with exponent

−0.42. C. The probability distribution of the inverse of optimal thresholds derived from the data in B. This is well described by a

power law with exponent −0.58. D. Predicted distribution of concentrations across different odorants when assuming optimal

coding by maximizing information or minimizing the MSE of the best linear decoder. This is well described by a power law with

exponents −0.58 and −1.74, respectively. The proportionality constant is not relevant (see Methods).

https://doi.org/10.1371/journal.pcbi.1007476.g006
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A recent study estimated these thresholds by recording from the entire ORN population

[37]. The responses for 34 odorants over a five-fold magnitude in concentration were well

described by a common Hill function with a shared steepness, but different activation thresh-

olds. Pooling all thresholds across the different odorants and concentrations revealed a power

law distribution. To use this threshold distribution in our theoretical framework, where a

range of thresholds codes for the intensity of a single stimulus, we had to make a critical

assumption. Specifically, we assumed that the population thresholds spanning the range of

concentrations for any one odor are a shuffled version of the population thresholds for other

odorants. This was justified by an analysis of a related data set [35], in which the distribution

of ORN firing rates was found to be stereotyped across different odors [36].

Using our optimal coding framework with a population of only ON neurons (since ORNs

have monotonically increasing response functions with concentration), we derived the most

likely stimulus distribution of odorant concentrations for each of the two efficiency measures.

The predicted distribution of odorant concentrations follows a power law distribution with an

exponent determined by the efficiency measure. Given a measured distribution of thresholds

which follows a power law with an exponent of −0.58 (Methods, Fig 6B and 6C) and assuming

an infomax code we predict that the distribution of odorant concentrations should also be a

power law with an exponent of −0.58 (Methods, Fig 6D). In contrast, assuming a code that

minimizes the stimulus reconstruction error, the distribution of odorant concentrations

should be a power law with an exponent of −1.74 (Methods, Fig 6D). Indeed, many processes

like convection and turbulence can generate power law dynamics [62], but the exact exponents

will need to be determined, for instance by measuring the volatiles from natural environments

[63, 64]. Although complex temporal dynamics in the stimulus can further complicate ORN

coding of fluctuating odorant concentrations, the measured temporal filter across ORNs is

remarkably stereotyped, suggesting that the olfactory code is similar between static and

dynamic odor environments.

We note that in our analysis we explicitly assume that the goal of the olfactory system is to

estimate the concentration of any one odor with high fidelity, therefore our analysis is only

valid for experiments where only one odor is present. However, the optimization problem

faced by the olfactory system might be different, i.e. to determine which, of many, odors are

present. Therefore, it is possible that the optimal thresholds in this case may be different.

Discussion

Information in neural circuits is processed by many different cell types, but it remains a chal-

lenge to understand how these distinct cell types work together. Here we treat a puzzling aspect

of neural coding, how do discrete cell types conspire to collectively encode a single relevant

variable in responses of opposite polarity? To evaluate such a population code we built on the

framework of efficient coding and extended it in several novel ways: by considering nonlinear

processing, biologically realistic levels of noise, short coding windows, and the coordination of

responses in populations of any size—factors which may vary across sensory systems. We then

derived two aspects of the population code, namely how to optimally split a population into

ON and OFF cells, and how to allocate the thresholds of the individual neurons as a function

of the noise level, the stimulus distribution and the optimality measure.

Optimal ON-OFF mixtures and comparison to experimental data

We considered two different measures of coding efficiency that are in common use [22, 26–

30]: the mutual information between stimulus and responses, and the mean squared error of

the linearly reconstructed stimulus. The first aspect of our predictions applies to the expected
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mixture of ON and OFF cells. If one chooses mutual information as the efficiency measure,

then all ON/OFF mixtures in the population perform identically once the thresholds are

adjusted (Fig 2). This result holds independent of the noise level and the shape of the stimulus

distribution, and generalizes for response functions with any number of discrete firing rate lev-

els. However, the number of spikes required for this performance, and thus the metabolic cost,

differs greatly depending on the ON/OFF ratio. If one considers the information per spike as

the relevant measure, then a system with equal number of ON and OFF cells is most efficient.

When we require the stimulus to be read out by an optimal linear readout, different ON/

OFF mixtures also achieve similar coding performance but only in the absence of noise (Fig 3).

In the biologically relevant regimes of non-negligible noise, noise has a dramatic influence on

the optimal performance realized by different ON/OFF mixtures (Fig 4). Populations with a

similar number of ON and OFF cells have a much smaller decoding error than populations

dominated by one cell type. The extreme case of the homogeneous population performs sub-

stantially worse that any mixed population (Fig 4). In the case of asymmetries in the stimulus

distribution, as encountered in many natural sensory stimulus distributions [20, 56–61], mini-

mizing the linear reconstruction error predicts that the optimal ON/OFF mixture should be

tuned to these asymmetries and the amount of noise (Fig 5).

How do these predictions accord with known neural codes? Since our theory applies to

populations of sensory neurons that code for the same stimulus variable, we need to consider

sensory systems where this is the case. Analyzing raw stimulus values, such as the light inten-

sity in a natural scene or the intensity of natural sounds, results in distributions which are

skewed towards negative stimuli [20, 56–61]. Our linear decoding theory then predicts that

more resources should be spent on OFF. Indeed, in the fly visual system, the OFF pathway is

overrepresented in the circuit for computations that extract motion vision, with the L1 neu-

rons being responsible for the processing of ON signals, while both L2 and L3 neurons for

OFF [9, 50]. These neurons are repeated in each cartridge, thus together code for the same

spatial location. Hence, at least for the fly visual system, our efficient coding results are in

accord with naturally encountered ON/OFF ratios. In contrast, the vertebrate retina repre-

sents a visual stimulus with spikes across diverse types of retinal ganglion cells, which differ in

their spatial and temporal processing characteristics [65, 66]. Certain types of ganglion cell

come in ‘paramorphic pairs,’ meaning an ON-type and an OFF-type that are similar in all

other aspects of their visual coding. A previous study by Ratliff et al. (2010) derived the opti-

mal numbers of ON and OFF retinal ganglion cells for encoding natural scenes assuming

maximal information transmission, as a function of the spatial statistics in these natural sti-

muli. In their model, every ganglion cell in the population encodes a different stimulus vari-

able, because it looks at a different spatial location. In contrast, our theory can only be applied

to populations that code for the same same stimulus feature, which may in fact contain only

one of each type (ON and OFF), but requires further experiments to determine the exact

numbers. To properly account for all thirty types of retinal ganglion cells will require more

complete models that include the spatial dimension and the encoding of different visual

features.

Besides the visual system, there are other examples in biology where different numbers of

ON and OFF cells are encountered, and where our theory more naturally applies with popula-

tions of neurons encoding a one-dimensional stimulus (Table 1). Single neurons in monkey

somatosensory cortex show diverse ON and OFF responses to the temporal input frequency of

mechanical vibration of their fingertips. While most neurons in primary somatosensory cortex

(S1) tune with a positive slope to the input frequency (ON), about half of the neurons in sec-

ondary somatosensory cortex (S2) behave in the opposite way (OFF) [33, 34]. Opposite polar-

ity pathways are also observed in thermosensation, where receptor proteins activated directly
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by positive and negative changes in temperature enable the detection of thermal stimuli. Four

mammalian heat-activated and two cold-activated ion channels have been shown to function

as temperature receptors [31, 32]. Given these observations of ON-OFF asymmetries, one is

led to conclude that information per spike may not be the cost function that drove evolution

of this system, since that would predict equal numbers of ON and OFF cells. Thus, whether

these different experimental observations are consistent with maximizing mutual information,

optimal linear decoding, or yet a different objective function or task (e.g. [67–69]), remains to

be seen (see also our discussion on the generality of assumptions). Other neuronal systems are

candidates for similar analysis, for instance, auditory nerve fibers [44], motor cortex [70], and

primary vestibular neurons [71].

Optimal threshold distributions and comparison to experimental data

Beyond predicting ON and OFF numbers, which has been the main focus of different models

about the vertebrate retina [20], we also predict the structure of response thresholds. Generally,

maximizing information implements an optimal strategy which emphasizes stimuli that occur

with higher probability (Figs 3 and 4). In the limit of low noise, this is consistent with the well-

known strategy of ‘histogram equalization’ [4], but we generalize this result to any amount of

biologically realistic noise. Importantly, the optimal interval size depends on the level of noise

with larger noise favoring smaller threshold intervals, implying a strategy closer to redundant

coding. In contrast to the information, minimizing the mean square error of the linear readout

implements a more conservative strategy that utilizes more cells in the encoding of rarer sti-

muli due to a larger error penalty (Figs 3 and 4).

Our theoretical framework applies to the case when the distribution of stimuli encoded by

the cells is known, and the only problem is to estimate the value of the stimulus by appropri-

ately distributing the cells’ thresholds. In the case of vision, for example, this implies estimating

the light intensity or contrast level. A direct test of our theoretical predictions for the optimal

thresholds would require simultaneous measurement of the population response thresholds,

which is within reach of modern technology [66]. In the meantime, we reversed our theoretical

approach and starting from an experimentally measured distribution of thresholds, we pre-

dicted the distribution of natural stimuli that the thresholds might optimally encode. We

applied this approach for the population of ORNs in the olfactory system of Drosophila larvae.

However, unlike vision, applying our framework to olfaction presents a different problem.

Here, the goal of the olfactory system is primarily to determine whether or not an odor is pres-

ent, not its concentration. Therefore, our analysis is only appropriate when only one odor is

present, and it can be inferred with high certainty. In this case, we assumed that the ORNs

code for the distribution of concentrations of the present odor by diversifying their thresholds.

Based on experimentally measured ORN thresholds which follow a power law distribution

[37], we derived the stimulus distribution of concentrations for any one tested odor under the

two optimality measures (Fig 6). This threshold distribution was also a power law with an

exponent dependent on the efficiency measure. Whether these distributions correspond to dis-

tributions of odorant concentrations found in natural olfactory environments remains to be

tested, and techniques for collecting the volatiles from natural encountered odors now exist

[63, 64]. These distributions would be strongly influenced by processes like convection and

turbulence, which can give rise to power law dynamics [62]. Although these are dynamical var-

iables that fluctuate in time, we propose that the distributions can be build by pooling different

aspects of the dynamics over extended time periods. In that context, our theoretical framework

would apply to populations which have been adapted to these distributions over those long

periods of time. It is possible that when considering a different optimization problem
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implemented by the olfactory system which aims to determine which, of many, odors are pres-

ent, a very different distribution of thresholds than the one our theory predicts would be

optimal.

Generality of assumptions and relationship to previous work

The two efficiency measures that we have used are entirely agnostic about the content of signal

transmission. However, faithful encoding of signals is not the only fitness requirement on a

sensory system, for example, some stimuli may have greater semantic value than others. Or,

the aim may be to extract task-relevant sensory information as in the case of the Information

Bottleneck framework [67, 68], or to achieve optimal inference of behaviorally-relevant prop-

erties in dynamic stimulus environments [69]. Other recent approaches, such as Bayesian effi-

cient coding, optimize an arbitrary error function [74]. Since our framework aims to encode a

stimulus as best as possible, we propose that it may be most appropriate for early sensory pro-

cessing, where stimulus representation might be the goal.

The efficient coding hypothesis was originally proposed by Attneave [75] and Barlow [1],

who studied deterministic coding, in the absence of noise. Since then, many studies have inves-

tigated efficient coding strategies under different conditions. Atick and Redlich introduced

noise and demonstrated that efficient coding can be used to explain the center-surround struc-

ture of receptive fields of retinal ganglion cells, which changes to center-only structure as the

signal-to-noise increases [2, 76]. Including nonlinear processing in the limit of low noise pro-

duced Gabor-like filters encountered in the primary visual cortex [13]. However, we now

know that already the very first stages of processing in many sensory systems are nonlinear,

consist of many parallel pathways and exhibit substantial amount of noise [77]—important

aspects of coding that we simultaneously incorporate in our analysis. Our work differs from a

previous report on ON and OFF cells in the vertebrate retina which proposed a simplified

noise model implemented by assuming a finite number of signaling levels (i.e. firing rates),

which does not incorporate spiking [20].

We considered a Poisson noise model of spiking which is commonly used in many studies.

Our results are especially relevant in the high noise regime, which corresponds to short coding

windows commonly encountered in biology, for instance, a few spikes per coding window [28,

38, 78]. In the low noise regime when the coding window is sufficiently long, or there is a large

number of neurons, our results agree with previous studies on infomax and the optimal linear

readout [4, 25, 79]. Efficient coding in the high noise regime has previously been examined,

but only in terms of the transfer function of a single neuron, which was shown to be binary

[27, 43]. We go beyond this work and provide analytical solutions for how a population of neu-

rons should coordinate their response ranges to optimally represent a given stimulus in the

realistic regimes of short encoding times.

We used a binary rate function to describe single neuron responses because it gives our

problem analytical tractability and it still represents a significant departure from previous effi-

cient coding frameworks based on linear processing [2, 3, 20, 21], long coding windows or infi-

nitely large populations [22–25]. Indeed, discretization in neural circuits is a common

phenomenon that is not only relevant for sensory coding, but also for neuropeptide signaling,

ion channel distributions and information transmission in genetic networks [39, 80]. Consid-

ering more general nonlinearities is currently only tractable with numerical simulations or in

the case of optimizing a local efficiency measure, the Fisher information, which may not accu-

rately quantify coding performance in finite size populations or biologically realistic noise (e.g.

low firing rates or short coding windows) [25, 49, 81–83].
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Summary

Given the ubiquity of ON/OFF pathway splitting in different sensory modalities and species,

our framework provides predictions for the optimal ON/OFF mixtures and the functional

diversity of sensory response properties that achieve this optimality in many sensory systems

based on the distribution of relevant sensory stimuli, the noise level and the measure of opti-

mality. Our theoretical approach is sufficiently general and is not fine-tuned to the specifics of

any one experimental system. The different predictions that we make depending on the model

assumptions could help determine the specific optimality criteria operating in different sen-

sory systems where different ON-OFF mixtures and tuning properties have been observed.

Directed experiments to compare the predicted and measured threshold distributions will test

whether the efficient coding criteria proposed here are a likely constraint shaping the organiza-

tion and adaptation of sensory systems.

Materials and methods

Mutual information and proof of the Equal Coding Theorem

First we prove the Equal Coding Theorem for a general population with N binary neurons.

Without loss of generality we assume that the neurons’ thresholds are:

y1 � . . . � yN ð11Þ

and we define the special θ0 = −1 and θN+1 =1. The Shannon mutual information between

the stimulus s and the spiking response n of the population is the difference between response

and noise entropy:

Iðs;nÞ ¼ HðnÞ � HðnjsÞ ¼ � hlog pðnÞin þ
XN

i¼1

hlog pðnijsÞini ;s ð12Þ

where h�ix denote averages over the distribution p(x) and p(n) = hp(n|s)is. We assume that

stimulus encoding by all neurons is statistically independent conditional on s so that

pðnjsÞ ¼
YN

i¼1

pðnijsÞ: ð13Þ

Given the Poisson noise model, knowing the stimulus s unambiguously determines the

response firing rate ν; for instance, for an ON cell if s< θ, ν = 0 and if s� θ, ν = νmax. We can

replace p(ni|s) with p(ni|ν) which is Poisson distributed: pðnijnÞ ¼
½nT�ni
ni !

e� nT .

We prove that I(s; n) = I(v, n). To see this, we write

Iðs; nÞ ¼
X

n

Z

s
ds pðsÞ pðnjsÞ log

pðnjsÞ
pðnÞ ð14Þ

¼ HðnÞ þ
X

n

Z

s
ds pðsÞ pðnjsÞ log pðnjsÞ: ð15Þ
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Using Eq 13, this becomes

Iðs;nÞ ¼ H ðnÞ þ
X

n

Z

s
ds p ðsÞ

Y

j

pðnjjsÞ
X

i

log pðnijsÞ ð16Þ

¼ H ðnÞ þ
X

i

X

ni

Z

s
ds pðsÞpðnijsÞlog pðnijsÞ ð17Þ

Similarly, we derive

Iðν; nÞ ¼
X

n

X

ν

pðνÞpðnjνÞlog
pðnjνÞ
pðnÞ

ð18Þ

¼ HðnÞ þ
X

n

X

ν

pðνÞpðnjνÞlog pðnjνÞ ð19Þ

which since

pðnjνÞ ¼
Z

s
ds pðnjsÞpðsjνÞ ¼

Y

i

Z

s
ds pðnijsÞpðsjνÞ ¼

Y

i

pðnijnÞ ¼
Y

i

pðnijniÞ ð20Þ

becomes

Iðν; nÞ ¼ HðnÞ þ
X

n

X

ν

pðνÞpðnjνÞ
X

i

log pðnijniÞ ð21Þ

¼ HðnÞ þ
X

i

X

ni

X

ni

pðniÞpðnijniÞlog pðnijniÞ: ð22Þ

Now, for a given i and a corresponding given spike count ni, which without loss of general-

ity we assume is an ON cell with threshold θi, we take the second term from Eq 17 and split the

integral:

Z

s
ds pðsÞpðnijsÞlog pðnijsÞ ¼

Z yi

� 1

ds pðsÞpðnijsÞlog pðnijsÞþ
Z 1

yi

ds pðsÞpðnijsÞlog pðnijsÞ ð23Þ

¼

Z yi

� 1

ds pðsÞpðnijni ¼ 0Þlog pðnijni ¼ 0Þ þ

Z 1

yi

ds pðsÞpðnijni ¼ nmaxÞlog pðnijni ¼ nmaxÞ

¼
X

ni

pðniÞpðnijniÞlog pðnijniÞ

ð24Þ

because we can just integrate out the s. Therefore, from Eqs 17, 22 and 24, we get I(s; n) = I(v,

n). Note that for a single cell, Nikitin et al. [43] also proved the same equality of information

using a different approach.

For a binary response function with two firing rate levels, 0 and νmax, we can lump together

all states with nonzero spike counts into a single state which we denote as 1. Correspondingly,

the state with zero spikes is 0. Hence, we can evaluate the mutual information between
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stimulus and spiking response using the following expressions for the spike count probabili-

ties:

pð0jn ¼ 0Þ ¼ 1; pð1jn ¼ 0Þ ¼ 0;

pð0jn ¼ nmaxÞ ¼ q; pð1jn ¼ nmaxÞ ¼ 1 � q;
ð25Þ

where q = e−R and R = νmaxT denote the level of noise in the system.

We prove the Equal Coding Theorem by showing that the mutual information coded by a

population of N ON cells is the same as that for any arbitrary mixture of ON and OFF cells.

For this proof, we assume that the maximal mutual information for a population of N neurons

is achieved where the responses of ON and OFF neurons do not overlap, i.e. the ON cells have

larger thresholds than the OFF cells. Numerical simulations of up to ten cells indicate that this

is indeed the case (Table 2), although we do not have an analytical proof that this is the optimal

solution for any population size and noise level. For instance, for N = 3 cells, the maximal

information achieved for R = 1 is 1.04 bits (see also Eq 1). The optimal threshold configura-

tions expressed as sequences of ON (‘N’) and OFF (‘F’) cells are FFF, FFN, FNN and NNN,

Table 2. Numerical results of the maximal mutual information for different configurations of ON and OFF cells allowing overlap, as well as enforcing overlap, for

populations of up to ten cells. The mutual information was computed numerically (in bits) upon finding the optimal threshold configuration where all possible overlap

scenarios were considered, and compared to the analytically computed value for non-overlapping cells (Eq 1). The specified ON-OFF configurations denote the optimal

sequence of ON (‘N’ symbol) and OFF (‘F’ symbol) thresholds. We consider three different noise levels denoted by R.

Allowing overlap Enforcing overlap

N R Eq 1 Max Info ON-OFF configurations Max Info ON-OFF configurations

2 0.1 0.102 0.102 FF, FN, NN 0.0952 NF

1 0.771 0.771 0.725

10 1.58 1.58 1.58

3 0.1 0.151 0.151 FFF, FFN, FNN, NNN 0.144 FNF, NFN

1 1.04 1.04 1.00

10 2.00 2.00 2.00

4 0.1 0.198 0.198 FFFF, FFFN, FFNN, 0.191 FNFN, FFNF,

1 1.27 1.27 FNNN, NNNN 1.24 NFNN

10 2.32 2.32 2.32

5 0.1 0.244 0.244 FFFFF, FFFFN, FFFNN, 0.237 FNFNN, FFNFN,

1 1.47 1.47 FFNNN, FNNNN, NNNNN 1.44 FFFNF, NFNNN

10 2.58 2.58 2.58

6 0.1 0.288 0.288 FFFFFF, FFFFFN, FFFFNN, 0.281 FNFNNN, FFNFNN,

1 1.64 1.64 FFFNNN, FFNNNN, FNNNNN 1.62 FFFNFN, FFFFNF,

10 2.81 2.81 NNNNNN 2.81 NFNNNN

7 0.1 0.331 0.331 FFFFFFF, FFFFFFN, 0.324 FNFNNNN, FFNFNNN,

1 1.80 1.80 FFFFFNN, FFFFNNN, 1.77 FFFNFNN, FFFFNFN

10 3.00 3.00 . . ., NNNNNNN 3.00 FFFFFNF, NFNNNNN

8 0.1 0.372 0.372 FFFFFFFF, FFFFFFFN, 0.366 FNFNNNNN, FFNFNNNN,

1 1.94 1.94 FFFFFFNN, FFFFFNNN, 1.92 FFFNFNNN, FFFFNNFN

10 3.17 3.17 . . ., NNNNNNNN 3.17 . . ., NFNNNNNN

9 0.1 0.413 0.413 FFFFFFFFF, 0.407 FNFNNNNNN,

1 2.06 2.06 FFFFFFFFN, 2.04 FFNFNNNNN,

10 3.32 3.32 . . ., NNNNNNNNN 3.32 . . ., NFNNNNNNN

10 0.1 0.452 0.452 FFFFFFFFFF, 0.446 FNFNNNNNNN,

1 2.18 2.18 FFFFFFFFFN, 2.16 FFNFNNNNNN,

10 3.46 3.46 . . ., NNNNNNNNNN 3.46 . . ., NFNNNNNNNN

https://doi.org/10.1371/journal.pcbi.1007476.t002
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which implies no overlap, even though overlap was allowed during the optimization. These

simulations also indicate when the ON and OFF cells are forced to overlap, the information

achieved is indeed lower than the non-overlapping scenario. Moreover, when the ON and

OFF cells are forced to overlap, the optimal configuration has the smallest possible overlap,

where only a single ON and a single OFF cell overlap (in fact, there are multiple such configu-

rations, see Table 2). For instance, for N = 3 cells, the best overlapping configurations are FNF

and NFN, which transmit 1.00 bits of information for R = 1. When the noise is negligible

(large R), the information for overlapping ON and OFF cells approaches the information with

non-overlapping ON and OFF cells. Therefore, from here on, we consider non-overlapping

ON and OFF cells: a population with m ON cells with larger thresholds than the N −m OFF

cells.

The total information can be described as the information from observing the m ON cells,

plus any additional information gained from observing the remaining cells N −m. Below we

demonstrate that this additional information is identical independent of whether the N −m
cells are ON (in which case the population is homogeneous and composed of all ON cells) or

OFF type (in which case the population is mixed). This turns out to be the case, as long as the

thresholds of the additional N −m cells are appropriately adjusted.

We can derive the expression for the mutual information between stimulus and response

given the N intervals

ui ¼

Z 1

yN� iþ1

ds pðsÞ; i ¼ 1; . . . ;m ð26Þ

for the m ON cells and

ui ¼

Z yi� m

� 1

ds pðsÞ; i ¼ mþ 1; . . . ;N ð27Þ

for the OFF cells, see Fig 7.

If a spike was observed from the m ON cells, then no additional information is gained from

the remaining N −m cells independent of their type because their firing rate is constant over

the entire stimulus interval in which the ON cells fire. Then, the total mutual information

achieved by all N cells, IN(s, n), is equal to the mutual information obtained from observing the

m ON cells, Im(s, n):

INðs;n; fu1; . . . ; uNgÞ ¼ Imðs; n; fu1; . . . ; umgÞ ð28Þ

where we explicitly denote the dependence of the mutual information on the threshold inter-

vals, ui’s. If no spike was observed from the m ON cells, then we get additional information

from the remaining N −m cells, but we need to consider the change in the stimulus distribu-

tion posterior to seeing no spike. Such a change in the stimulus distribution is equivalent to

adjusting the thresholds of the remaining N −m cells, and as a result, the threshold intervals. If

none of the m ON cells fired, then, we can formally write the total information as follows (see

Fig 7):

INðs; n; fu1; . . . ; uNgÞ ¼ Imðs;n; fu1; . . . ; umgÞ þ QmImþ1;...;Nj1;...;mðs; n; fu0mþ1
; . . . ; u0NgÞ ð29Þ

where Qm is the probability that none of the m ON cells fired, and Im+1, . . ., N|1, . . ., m is the addi-

tional mutual information gained from the remaining N −m cells with adjusted thresholds,

and consequently threshold intervals, u0i.
By writing the information in this manner, we have only assumed that the first m cells are

ON, but have not assumed anything about the type of the additional N −m cells. In fact, for
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any ON-OFF mixture given by the number of ON cells, m, one can choose the same thresholds

θN−m+1, . . ., θN (and thus thresholds intervals u1, . . ., um) for the first m ON cells, and then

change the thresholds θ1, . . ., θN−m (and thus threshold intervals um+1, . . ., uN) of the remain-

ing N −m cells so as to produce the same adjusted threshold intervals, u0mþ1
; . . . ; u0N .

How can this readjustment be done for the different mixtures? If no spike was observed

from the ON cells 1, . . ., m, then the stimulus distribution to be coded by the remaining cells

changes from the prior p(s) to a new posterior distribution

pðsj0Þ ¼ pð0jsÞ
pðsÞ
pð0Þ

¼ pðsÞ
pð0jsÞ
Qm

: ð30Þ

1. If the remaining N −m cells are ON, the region of reduced p(s) is entirely within the

response region. Thus, the revised probability of having the stimulus in the response region

is

u0i ¼
Z þ1

yi

ds pðsj0Þ ¼
1

Qm

Z þ1

yi

ds pð0jsÞpðsÞ

¼
1

Qm

Z 1

1� ui

dx pð0jxÞ ¼
ui � ð1 � QmÞ

Qm
:

ð31Þ

where x ¼
R s

0
pðs0Þds0.

Fig 7. Thresholds θi and intervals between thresholds ui for a population of 6 cells. Top: a homogeneous population

with 6 ON cells; bottom: a mixed population with 3 ON and 3 OFF cells.

https://doi.org/10.1371/journal.pcbi.1007476.g007
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2. If the remaining N −m cells are OFF, the region of reduced p(s) is entirely outside their

response region. Thus, their revised probability is

u0i ¼
Z yi

0

ds pðsj0Þ ¼
1

Qm

Z yi

0

ds pð0jsÞpðsÞ ¼
1

Qm

Z ui

0

dx pð0jxÞ ¼
ui

Qm
: ð32Þ

Therefore, the readjustment of the threshold intervals can be done differently for a homoge-

neous population when the remaining N −m cells are all ON, vs. a mixed population when the

remaining N −m cels are all OFF. Since m can be anything between 1 and N, this covers all

possible mixtures of ON and OFF cells, where

u0i ¼

ui � ð1 � QmÞ

Qm
; homogeneous population with N ON cells

ui

Qm
; mixed population with m ON cells and N � m OFF cells

8
>>><

>>>:

ð33Þ

To find the maximal mutual information one needs to maximize Eq 29 with respect to all

the thresholds (i.e. threshold intervals). Since the homogeneous population of N ON cells and

the mixed population of m ON cells and N −m OFF cells share the same m ON cells, maximiz-

ing the total mutual information IN in Eq 29 is equivalent to maximizing the additional mutual

information Im+1, . . ., N|1, . . ., m gained from the remaining N −m cells with adjusted threshold

intervals according to Eq 33. This explains why the maximum information is identical between

the purely homogeneous population with N ON cells and a mixed population where N −m
cells are OFF.

Thresholds when optimizing the mutual information: A homogeneous

population

Next we derive the optimal thresholds for the homogeneous population with N ON cells, and

later derive the thresholds of the N −m OFF cells after swapping.

If the thresholds are ordered in ascending order as assumed above, then u1 < u2 < . . .< uN
(Fig 7). The mutual information of N ON cells can be written as follows. First, for a population

of N = 1 cells this has the form

I1 ¼ Hðn1Þ � Hðn1jsÞ ¼ hðu1ð1 � qÞÞ � u1hð1 � qÞ; ð34Þ

where h is the entropy of a binary variable, h(u) = −u log u − (1 − u) log(1 − u). For a popula-

tion of N = 2 cells it has the form

I2 ¼ I1 þ Pðn1 ¼ 0ÞI2j1 ¼ gðu1Þ þ ð1 � u1ð1 � qÞÞgðuð1Þ2 Þ ð35Þ

where we have defined g(u) = h(u(1 − q)) − uh(1 − q). Here, uð1Þ2 denotes the revised value of u2

following the observation of cell 1. In general, we use uðjÞi to denote the revised value of ui after

the observation that cell j< i did not spike. Therefore, for a population of N = 3 cells it has the

form

I3 ¼ gðu1Þ þ ð1 � u1ð1 � qÞÞ½gðuð1Þ2 Þ þ ð1 � uð1Þ2 ð1 � qÞÞgðuð2Þ3 Þ�: ð36Þ
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Generalizing this for N cells, the information is

IN ¼ gðu1Þ þ ð1 � u1ð1 � qÞÞ½gðuð1Þ2 Þ þ . . . ð1 � uðN� 2Þ

N� 1 ð1 � qÞÞgðuðN� 1Þ

N Þ . . .�: ð37Þ

The revised values of uðjÞi for i = 2, . . .N and j = 1, . . .i − 1 follow based on readjusting the

thresholds depending on the observation of cells 1, . . .N − 1 one at a time. For example, follow-

ing the observation that cell 1 did not spike, the effective values of u2, u3, . . .uN are revised to

uð1Þi ¼
ui � u1ð1 � qÞ
1 � u1ð1 � qÞ

; for i ¼ 2; . . .N: ð38Þ

Following the observation that cell 2 did not spike, uð1Þ3 ; u
ð1Þ

4 . . . uð1ÞN are further revised to

uð2Þi ¼
uð1Þi � uð1Þ2 ð1 � qÞ
1 � uð1Þ2 ð1 � qÞ

; for i ¼ 3; . . .N: ð39Þ

This process continues, until the observation of cell N − 1 with the final set of uðN� 2Þ

N being

revised to

uðN� 1Þ

N ¼
uðN� 2Þ

N � uðN� 2Þ

N� 1 ð1 � qÞ
1 � uðN� 2Þ

N� 1 ð1 � qÞ
: ð40Þ

We maximize the information in Eq 37 with respect to each uðjÞi . We can do this sequen-

tially: first maximize I with respect to uðN� 1Þ

N , which results in maximizing gðuðN� 1Þ

N Þ. The maxi-

mum is obtained at

uðN� 1Þ

N ¼
1

ð1 � qÞ
1

ð1þ eHqÞ
ð41Þ

yielding a maximal value of

logð1þ e� HqÞ ð42Þ

where we recall

Hq ¼ �
1

ð1 � qÞ
½ð1 � qÞ logð1 � qÞ þ q logðqÞ� ð43Þ

is the noise entropy in the large population regime. Next, we maximize I with respect to uðN� 2Þ

N� 1 ,

which results in maximizing gðuðN� 2Þ

N� 1 Þ þ ð1 � uðN� 2Þ

N� 1 ð1 � qÞÞ log ð1þ e� HqÞ. The maximum is

obtained at

uðN� 2Þ

N� 1 ¼
1

ð1 � qÞ
1

ð2þ eHqÞ
ð44Þ

yielding a maximal value of

log ð1þ 2e� HqÞ: ð45Þ

Finally, we maximize I with respect to u1, which results in maximizing

gðu1Þ þ ð1 � u1ð1 � qÞÞ log ð1þ ðN � 1Þe� HqÞ. The maximum is obtained at

u1 ¼
1

ð1 � qÞ
1

N þ eHq
ð46Þ
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yielding a maximal value of the mutual information as in Eq 1 in the Results section

I ¼ log ð1þ Ne� HqÞ: ð47Þ

Based on these derivations we can obtain the sequence of

ui ¼
1

ð1 � qÞ
1þ ði � 1Þð1 � qÞ

N þ eHq
; for i ¼ 1; . . .N ð48Þ

where the difference between consecutive thresholds is given by Eq 2

p ¼ uiþ1 � ui ¼
1

N þ eHq
; for i ¼ 1; . . .N � 1 ð49Þ

and the ‘edge’ threshold is Eq 3

pedge ¼ u1 ¼
1

ð1 � qÞ
1

N þ eHq
: ð50Þ

Thresholds when optimizing the mutual information: A mixed population

With the Equal Coding Theorem we showed that the information for any ON/OFF mixture is

the same (Eq 47). Next, we show how to derive the thresholds for a mixed population since we

know that it will have the same mutual information as the homogeneous population. We do

this by swapping N −m of the ON cells into OFF cells, knowing that the thresholds of the ON

cells in the new mixed population remain the same, and derive the thresholds for the swapped

OFF cells. This means that we need to derive a new set of umix
mþ1
; . . . ; umix

N for the OFF popula-

tion, while keeping u1, . . . um the same for the ON population. To do this, recall that the

thresholds for the OFF cells follow different update rules every time an ON cell is observed

(see Eq 33). In particular,

uðkÞi ¼
uðk� 1Þ

i

1 � uðk� 1Þ

k ð1 � qÞ
; for i ¼ mþ 1; . . .N: ð51Þ

Additionally, following the observation of OFF cell k (where k = m + 1, . . ., N − 1)

uðkÞi ¼
uðk� 1Þ

i � uðk� 1Þ

k ð1 � qÞ
1 � uðk� 1Þ

k ð1 � qÞ
; for i ¼ kþ 1; . . .N: ð52Þ

Using these recursions and the values uðjÞi for the ON cells derived previously (Eqs 41–46)

one can recover the thresholds:

ui ¼
1

ð1 � qÞ
1þ ði � 1Þð1 � qÞ

N þ eHq
; for i ¼ 1; . . .m ð53Þ

for the ON cells and

umix
i ¼

1

ð1 � qÞ
1þ ðm � iþ 1Þð1 � qÞ

N þ eHq
; for i ¼ mþ 1; . . .N ð54Þ

for the OFF cells (in the mixed population case) where the difference between consecutive

thresholds (except between the smallest ON and the largest OFF) is given by Eq 49 and the

‘edge’ thresholds by Eq 50. From here we can derive the ‘silent’ interval between the smallest

ON and the largest OFF that separates the ON and OFF thresholds, p0 = 1 − (N − 2)p − 2pedge.
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Mean firing rate when optimizing the mutual information

Given the optimal thresholds, the mean firing rate per neuron in a population with m ON cells

is:

r ¼ R pedge þ
p
2

m2 þ ðN � mÞ2

N
� 1

� �� �

ð55Þ

In the large population regime, with α = m/N the fraction of ON cells, the mean firing rate per

neuron is

rðaÞ ¼
R
2
a2 þ ð1 � aÞ

2
� �

; ð56Þ

however, in the high noise regime this becomes independent of α

rðaÞ ¼
R
e
: ð57Þ

Optimal linear readout without noise

We present here the derivation for the homogeneous population with only ON cells when

R!1. The linear stimulus estimate of s (Eq 4) can be written as:

y ¼
XN

i¼1

wiYðs � yiÞ þ w0 ð58Þ

where wi represent the decoding weights and the responses are given by the binary Heaviside

functions with thresholds θi. Then the mean square error between the original and the esti-

mated stimulus can be written as:

E ¼ hðy � sÞ2i: ð59Þ

In the case of the homogeneous population, we can emulate the constant term w0 as the

weight of an additional neuron with threshold θ0 = −1. Then

Ci ¼ hYðs � yiÞi and Ui ¼ hsYðs � yiÞi ð60Þ

so the error can be written as:

E ¼ wTCw � 2UTwþ hs2i ð61Þ

where since hΘ(s − θi)Θ(s − θj)i = hΘ(s − max(θi, θj))i, for i� j, we can write: Cij = Ci. Optimiz-

ing with respect to the weights give us

w ¼ C� 1U ð62Þ

which we can rewrite as (Eq 6 in the Results section):

X

j�i

wj ¼

R yiþ1

yi
ds s pðsÞ

R yiþ1

yi
ds pðsÞ

¼ hsii; 0 � i � N ð63Þ

with θN+1 =1 and (Eq 5 in the Results section):

wi ¼ hsii � hsii� 1
; i ¼ 1; :::;N and w0 ¼ hsi0: ð64Þ
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Optimizing with respect to the thresholds:

X

j�i

wj ¼ yi þ
wi

2 ð65Þ

which gives

yi � yi� 1 ¼
1

2
ðwi � wi� 1Þ ð66Þ

and from this we can derive (Eq 7 in the Results section):

yi ¼
1

2
ðhsii þ hsii� 1

Þ ; i ¼ 1; :::;N: ð67Þ

Optimizing with respect to the constant term yields:

w0 ¼

R y1

� 1
ds s pðsÞ

R y1

� 1
ds pðsÞ

: ð68Þ

To solve these equations numerically, we implement an iterative procedure that rapidly

converges to the optimal solution: starting from an ansatz for the thresholds, we compute hsii
and obtain wi, which is used to derive the new set of thresholds.

In the case of the mixed population with ON and OFF cells, the optimal solution is one

where the ON and OFF responses do not overlap; thus, there is no correlation between them.

Therefore, we can treat each subpopulation separately, and in identical manner to the purely

homogeneous case. The optimal weights and thresholds are identical to the homogeneous pop-

ulation population, with the exception of the constant term:

wm
0
¼

R yON
1

y1
OFF ds s pðsÞ

R yON
1

y1
OFF ds pðsÞ

ð69Þ

where y1

OFF
denotes the largest OFF threshold and y1

ON
denotes the smallest ON threshold in

the population.

Thresholds when optimizing the linear readout without noise

Now we consider the case of large N (for any mixture of ON and OFF cells) to derive the

thresholds in the asymptotic limit where the threshold intervals (differences between neigh-

boring thresholds) are small. We use a first order expansion of the stimulus distribution p(s)
around each threshold θj in the expressions for hsij.

hsij ¼

R yjþ1

yj
ds s pðsÞ

R yjþ1

yj
ds pðsÞ

¼ yj þ

R yjþ1

yj
dsðs � yjÞpðsÞ
R yjþ1

yj
ds pðsÞ

� yj þ
yjþ1 � yj

2
þ

p0ðyjÞ
12pðyjÞ

ðyjþ1 � yjÞ
2
ð70Þ

and similarly,

hsij� 1 � yj þ
yj� 1 � yj

2
þ

p0ðyjÞ
12pðyjÞ

ðyj� 1 � yjÞ
2
: ð71Þ
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Combining Eqs 70 and 71 into Eq 67, yields

2yj � yjþ1 � yj� 1

4
¼

p0ðyjÞ
24pðyjÞ

ðyjþ1 � yjÞ
2
þ ðyj� 1 � yjÞ

2
h i

: ð72Þ

Taking the continuous limit so that j maps onto x with j = 1 corresponding to x = 0, j = N
corresponding to x = 1, and dx = 1/N, we can write

yjþ1 � yj ¼ dx y0ðxÞ ð73Þ

yjþ1 � 2yj þ yj� 1 ¼ ðdxÞ
2
y
00
ðxÞ ð74Þ

turning Eq 72 into:

y”ðxÞ ¼ gðxÞ ðy0ðxÞÞ2: ð75Þ

We can further define:

gðxÞ ¼ �
dpðyðxÞÞ=dy

3pðyðxÞÞ
¼

GðxÞ
y
0
ðxÞ

where GðxÞ ¼ �
d

3dx
log pðyðxÞÞ: ð76Þ

Denoting y(x) = θ0(x) gives the differential equation

y0ðxÞ ¼ GðxÞ yðxÞ ð77Þ

which has the solution

log y ¼
Z x

duGðuÞ þ c ð78Þ

and consequently we obtain the differential equation

y
0
ðxÞ ¼

c
pðyðxÞÞ1=3 ð79Þ

where c is a constant. This can be inverted into

xðyÞ ¼ c
Z y

� 1

pðy0Þ1=3dy0 þ c0 ð80Þ

where x = i/N is the threshold index. We can determine the constants c and c0 from the bound-

ary conditions:

xð� 1Þ ¼ 0; xð1Þ ¼ 1 ð81Þ

such that (as Eq 8 in the Results section),

xðyÞ ¼ Z
Z y

� 1

pðy0Þ1=3dy0; Z� 1 ¼

Z 1

� 1

pðy0Þ1=3dy0: ð82Þ

Inverting this relationship, we can obtain the threshold distribution θ(x) as a function of

the index x = i/N. An expression for the optimal thresholds for the Laplace distribution:

p(s) = 1/2e−|s| is provided in Eq 9 in the Results section.
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Optimal linear readout with noise: Homogeneous population

For convenience, we normalize the linear readout

y ¼
1

R

X

i

wini þ w0: ð83Þ

The error can be written as before (Eq 61) with different correlations

Cij ¼
1

R
hhniinhnjini þ

1

R2
dijhhniini ¼ hYðs � yiÞYðs � yjÞi þ

1

R
dijhYðs � yiÞi ð84Þ

If we define, as before:

Ci ¼ hYðs � yiÞi ð85Þ

then for hΘ(s − θi)Θ(s − θj)i = hΘ(s − max(θi, θj))i, and for i� j:

Cij ¼ Ci þ
1

R
dijCi ð86Þ

and

Ui ¼ hsYðs � yiÞi � w0hYðs � yiÞi: ð87Þ

Optimizing with respect to the weights:

w ¼ C� 1U ð88Þ

and

w0 ¼ hsi �
XN

i¼1

wihYðs � yiÞi: ð89Þ

Optimizing with respect to the thresholds:

yi ¼ w0 þ
X

j�i

wj �
wi

2
1 � R� 1ð Þ; i ¼ 1; :::;N: ð90Þ

To solve these equations numerically, we implement an iterative procedure that rapidly

converges to the optimal solution: starting from an ansatz for the thresholds, we compute C
and U and obtain w from Eq 88, which is used to derive the new set of thresholds.

Thresholds when optimizing the linear readout with noise: Homogeneous

population

We provide an expression for the optimal thresholds for the general Laplace distribution:

pðsÞ ¼
Aþe� s=tþ ; s � 0;

A� es=t� ; s < 0:

(

ð91Þ

The symmetric Laplace distribution is one example, p(s) = 1/2e−|s|, with A+ = A− = 1/2 and

τ+ = τ− = 1. In the limit of large population size N, we again derive the thresholds in the
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asymptotic limit where the threshold intervals are small. Assuming θ1 < 0,

xðyÞ ¼
1

R 0

y1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
þ 2tþ

ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p

R y
y1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
; y � 0

R 0

y1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
þ 2tþ

ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p
ð1 � e� y=2tþÞ; y > 0

8
><

>:
ð92Þ

and assuming |θ1| is large so that
R y
y1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
� y � y1, we can approximate

xðyÞ �
1

� y1 þ tþ
ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p

y � y1; y � 0

� y1 þ 2tþ
ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p
ð1 � e� y=2tþÞ; y > 0

8
<

:
ð93Þ

inverting this relationship, the optimal thresholds are:

yðxÞ �

y1 þ ð� y1 þ 2tþ
ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p
Þx; 0 � x � 1

1� 2tþ

ffiffiffiffiffiffiffiffi
Aþtþ
p

=y1

;

� 2tþlog 1 �
y1

2tþ

ffiffiffiffiffiffiffiffi
Aþtþ
p

� �

ð1 � xÞ
� �

; 1

1� 2tþ

ffiffiffiffiffiffiffiffi
Aþtþ
p

=y1

� x � 1:

8
>>><

>>>:

ð94Þ

To fully determine the optimal thresholds, this requires knowledge of the first threshold, θ1.

In the asymptotic limit, where the thresholds θi are close to each other, again expanding p(s)
around each threshold, we derive

y1 � t� log
logðRNA� t� Þ

RNA� t2
�

� �

: ð95Þ

Optimal linear readout with noise: Mixed ON-OFF population

So far we have not explicitly treated the ON and OFF populations separately, because both

when maximizing the mutual information for all noise levels, and minimizing the MSE in the

limit of no noise, the performance and optimal thresholds were the same for all populations

independent of the ON/OFF mixture. Now, we must treat the two populations separately.

Assume we have m ON cells and N −m OFF cells. We order the thresholds in the following

manner (since non-overlapping ON and OFF cells is the optimal solution),

y
OFF
N� m � y

OFF
N� m� 1

� ::: � y
OFF
1
� y

ON
1
� y

ON
2
� ::: � y

ON
m� 1
� y

ON
m ð96Þ

so that we can proceed in the same manner for each subpopulation as for the homogeneous

population. The readout can be written as

y ¼
1

R

XN� m

i¼1

wOFF
i nOFF

i þ
1

R

Xm

i¼1

wON
i nON

i þ w0: ð97Þ

The error then is (assuming the optimal ON and OFF thresholds do not overlap—so that

the ON-OFF cross-correlation is zero):

E ¼ hðy � sÞ2i ¼ ðwONÞ
TCONwON þ ðwOFFÞ

TCOFFwOFF � 2ðwONÞ
TUON � 2ðwOFFÞ

TUOFF þ hðs � w0Þ
2
i ð98Þ

CON
ij ¼ CON

i and COFF
ij ¼ COFF

i for i � j; ð99Þ
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and

CON
i ¼ hYðs � y

ON
i Þi þ

1

R
dijhYðs � y

ON
i Þi ð100Þ

COFF
i ¼ hYðy

OFF
i � sÞi þ

1

R
dijhYðy

OFF
i � sÞi; ð101Þ

UON
i ¼ hsYðs � y

ON
i Þi � w0hYðs � y

ON
i Þi ð102Þ

UOFF
i ¼ hsYðyOFFi � sÞi � w0hYðy

OFF
i � sÞi ð103Þ

Optimizing with respect to the weights we get very similar expressions for each subpopulation

(ON and OFF) as for the homogeneous population:

wON ¼ ðCONÞ
� 1UON and wOFF ¼ ðCOFFÞ

� 1UOFF ð104Þ

and optimizing the thresholds:

X

j�i

wON
j ¼ y

ON
i � w0 þ

wON
i

2
ð1 � R� 1Þ; i ¼ 1; :::;m ð105Þ

for the ON cells, and similarly for the OFF:

X

j�i

wOFF
j ¼ y

OFF
i � w0 þ

wOFF
i

2
ð1 � R� 1Þ; i ¼ 1; :::;N � m: ð106Þ

The difference from the homogeneous population is in the constant term:

wm
0
¼ hsi �

Xm

i¼1

wON
i CON

i �
XN� m

j¼1

wOFF
j COFF

j : ð107Þ

Thresholds when optimizing the linear readout with noise: Mixed ON-OFF

population

We proceed in a similar fashion as with the homogeneous population to obtain the approxima-

tion in the case of large N: Let f ON = m/N be the fraction of ON cells and fOFF = (N −m)/N be

the fraction of OFF cells in the population. We remap the thresholds, so that in the continuum

limit y
OFF
N� m � y

OFF
N� m� 1

� ::: � y
OFF
1

becomes θOFF(xOFF) and y
ON
1
� y

ON
2
� ::: � y

ON
m� 1
� y

ON
m

becomes θON(xON). Thus, the threshold index x = i/N 2 [0, 1] for the homogeneous population

becomes xON = i/m 2 [0, fON] and i = 1, 2, . . ., m being the indices of the ON cels, and xOFF =

i/(N −m)2[0, fOFF] and i = 1, 2, . . ., N −m being the indices of the OFF cells. Fig 8 illustrates

the mapping.

We provide an expression for the optimal thresholds for the general Laplace distribution

(Eq 91), and for a population that is unbalanced and has more ON cells, fON > fOFF. If

y
OFF
1
� y

ON
1
� 0, for the ON thresholds and weights the solution is similar to the case of the

homogeneous population, i.e.

xONðyONÞ ¼
f ON

R 0

yON
1

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
þ 2tþ

ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p

Z yON

yON
1

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
; y

ON
� 0 ð108Þ
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and

xONðyONÞ ¼ f ON 1 �
2tþ

ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p
e� yON=2tþ

R 0

yON
1

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
þ 2tþ

ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p

2

4

3

5; y
ON
> 0: ð109Þ

These expressions have to be inverted to obtain θON(xON), which has to be done numeri-

cally. We proceed very similarly for the OFF cells. Namely, if y
OFF
1

< 0 and assuming jy
OFF
N� mj is

large

xOFFðyOFFÞ ¼ f OFFð1 � eðyOFF� yOFF1
Þ=2t� Þ ð110Þ

inverting this relationship is possible analytically

y
OFF
ðxOFFÞ ¼ yOFF

1
þ 2t� log ð1 � x=f OFFÞ: ð111Þ

To fully determine the optimal thresholds, this requires knowledge of the first ON and OFF

thresholds, y
ON
1

and y
OFF
1

.

When the population is mixed so that neither population dominates, the first ON and

OFF thresholds are order 1. Assuming that they are close in stimulus space, so that

y
ON
1
� y

OFF
1
� 1, we can use the equations from optimizing the thresholds and weights to

obtain the following equation which can be solved for � ¼ y
OFF
1

:

Xð�Þ ¼
2t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A � t� e� �=t�

p

R 0

yON
1

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � A� t� eu=t�

p
þ 2tþ

ffiffiffiffiffiffiffiffiffiffiffi
Aþtþ

p
1

A� t�
e�=t� � 1

� �

ð112Þ

For the symmetric Laplace distribution with A+ = A− = 1/2 and τ+ = τ− = 1, the equation to

solve for ϕ reduces to (Fig 9):

Xð�Þ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

2
e� �

p

ffiffiffi
2
p
þ
R 0

� �
du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

2
eu

p 2e� � 1ð Þ: ð113Þ

As shown in Fig 9, when there is an equal number of ON and OFF cells, X = 1 and

y
ON
1
� y

OFF
1
� 0. If there are 20% OFF cells and 80% ON cells in the population, then X =

(1/5)/(4/5) = 1/4, and the first thresholds of each subpopulation are y
ON
1
� y

OFF
1
¼ � 0:79. In

the Results section we also considered asymmetric stimulus distributions where we varied the

negative-to-positive bias τ−/τ+ and derived the solutions in a similar manner (Fig 5).

Fig 8. The mapping of the threshold indices from the homogeneous population with only ON cells (top) to the

mixed population with ON and OFF cells (bottom).

https://doi.org/10.1371/journal.pcbi.1007476.g008
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Deriving the stimulus distribution from measured ORN thresholds

From the study of Si and colleagues we extracted the distribution of measured thresholds

(referred to as EC50 values) [37]. The cumulative distribution of the inverse of thresholds is

PyðX >
1

y
Þ /

1

y

� �� l
ð114Þ

where λ = 0.42 (Fig 6B). This enables us to derive the probability density function of the

inverse of thresholds (Fig 6C)

py
1

y

� �

/
1

y

� �� l� 1

: ð115Þ

This distribution has a cut-off of θc = 4.22 � 104 as reported in [37]. From this, we can derive

the distribution of measured thresholds

pyðyÞ ¼
1

y
2
p

1

y

� �

such that pyðyÞ / y
� lþ1

: ð116Þ

Next, we assume that these measured thresholds implement an optimal code first under the

infomax criterion. Now, using the equation for the cumulative distribution of optimal thresh-

olds in the large population limit, xðyÞ ¼
R y
� 1

pcðzÞ dz, we can derive the stimulus distribution

of odorant concentrations, pc,

pcðCÞ / C� lþ1 ¼ C� 0:58: ð117Þ

However, if we assume that these measured thresholds implement an optimal code

under the criterion of minimizing the mean squared error of the optimal linear decoder,

Fig 9. Determining the first thresholds for a mixed population of ON and OFF cells, ϕ ¼ jθON
1 j � jθ

OFF
1 j as a

function of X = fOFF/fON. For a symmetric Laplace distribution p(s) = 1/2e−|s|.

https://doi.org/10.1371/journal.pcbi.1007476.g009
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xðyÞ ¼
R y
� 1

p1=3
c ðzÞ dz, then the stimulus distribution of odorant concentrations, pc, is

pcðCÞ / C3ð� lþ1Þ ¼ C� 1:74: ð118Þ

These are both shown in Fig 6D.

Supporting information

S1 Fig. Binary neurons with spontaneous firing rate and Poisson noise. A framework with

binary neurons that have two firing rate levels, r if the stimulus is smaller (bigger) than a
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S2 Fig. Sigmoidal neurons with sub-Poisson experimentally measured noise. Two sigmoidal

nonlinearities for an ON cell (red) and an OFF cell (blue), describing the firing rate as a func-

tion of stimulus with the maximum expected spike count R, the gain β, and the threshold θ.

The shaded curve denotes the Laplace stimulus probability distribution.

(EPS)

S1 Text. Mutual Information for a system with two cells. The mutual information for differ-

ent noise models.

(PDF)

S1 Table. Conditional probability matrix. Conditional probability matrix p(k1, k2|s) for a

mixed ON-OFF system.

(PDF)

S2 Table. Conditional probability matrix. Conditional probability matrix p(k1, k2|s) for a

homogeneous ON-ON system.

(PDF)

S3 Table. Mutual information for a two-cell system. Mutual information for a two-cell sys-

tem with spontaneous firing rate and Poisson noise.

(PDF)

S4 Table. Mutual information for a two-cell system. Mutual information for a two-cell sys-

tem with empirically measured sub-Poisson noise from salamander retinal ganglion cells.

(PDF)

Acknowledgments

We thanks Shuai Shao for careful reading of the analytical calculations.

Author Contributions

Conceptualization: Julijana Gjorgjieva, Markus Meister, Haim Sompolinsky.

Formal analysis: Julijana Gjorgjieva, Markus Meister, Haim Sompolinsky.

Funding acquisition: Julijana Gjorgjieva, Markus Meister, Haim Sompolinsky.

Investigation: Julijana Gjorgjieva.

Methodology: Julijana Gjorgjieva, Markus Meister, Haim Sompolinsky.

Functional diversity among sensory neurons from efficient coding principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007476 November 14, 2019 34 / 38

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007476.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007476.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007476.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007476.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007476.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007476.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007476.s007
https://doi.org/10.1371/journal.pcbi.1007476


Software: Julijana Gjorgjieva.

Supervision: Markus Meister, Haim Sompolinsky.

Visualization: Julijana Gjorgjieva.

Writing – original draft: Julijana Gjorgjieva.

Writing – review & editing: Julijana Gjorgjieva, Markus Meister, Haim Sompolinsky.

References
1. Barlow HB. Possible principles underlying the transformations of sensory messages. In: Sensory Com-

munication. MIT Press; 1961. p. 217–234.

2. Atick JJ, Redlich AN. Towards a theory of early visual processing. Neural Comput. 1990; 2:308–320.

https://doi.org/10.1162/neco.1990.2.3.308

3. Atick JJ, Redlich AN. What does the retina know about natural scenes? Neural Comput. 1992; 4:196–

210.

4. Laughlin SA. Simple coding procedure enhances a neuron’s information capacity. Z Naturforsch C.

1981; 36:910–912. https://doi.org/10.1515/znc-1981-9-1040

5. van Hateren JH. Theoretical predictions of spatiotemporal receptive fields of fly LMCs, and experimen-

tal validation. J Comp Physiol A. 1992; 171:157–170. https://doi.org/10.1007/BF00188924

6. Smith EC, Lewicki MS. Efficient auditory coding. Nature. 2006; 439:978–982. https://doi.org/10.1038/

nature04485 PMID: 16495999

7. Simoncelli EP, Olshausen BA. Natural image statistics and neural representation. Annu Rev Neurosci.

2001; 24:1193–1216. https://doi.org/10.1146/annurev.neuro.24.1.1193 PMID: 11520932

8. Kuffler SW. Discharge patterns and functional organization of mammalian retina. J Neurophysiol. 1953;

16:37–68. https://doi.org/10.1152/jn.1953.16.1.37 PMID: 13035466

9. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A. ON and OFF pathways in Drosophila motion vision.

Nature. 2010; 468:300–304. https://doi.org/10.1038/nature09545 PMID: 21068841

10. Gallio M, Ofstad TA, Macpherson LJ, Wang JW, Zuker CS. The coding of temperature in the Drosophila

brain. Cell. 2011; 144:614–624. https://doi.org/10.1016/j.cell.2011.01.028 PMID: 21335241

11. Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, et al. Dissecting a circuit for

olfactory behaviour in Caenorhabditis elegans. Nature. 2007; 450:63–70. https://doi.org/10.1038/

nature06292 PMID: 17972877

12. Tsunozaki M, Bautista DM. Mammalian somatosensory mechanotransduction. Curr Opin Neurobiol.

2009; 19:362–369. https://doi.org/10.1016/j.conb.2009.07.008 PMID: 19683913

13. Bell CC. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiologi-

cal differences between two morphological types of fibers. J Neurophysiol. 1990; 63:319–332. https://

doi.org/10.1152/jn.1990.63.2.319 PMID: 2313348

14. Kastner DB, Baccus SA. Coordinated dynamic encoding in the retina using opposing forms of plasticity.

Nat Neurosci. 2011; 14:1317–1322. https://doi.org/10.1038/nn.2906 PMID: 21909086

15. Hodson-Tole EF, Wakeling JM. Motor unit recruitment for dynamic tasks: current understanding and

future directions. J Comp Physiol B. 2009; 179:57–66. https://doi.org/10.1007/s00360-008-0289-1

PMID: 18597095

16. Schiller PH. The ON and OFF channels of the visual system. Trends Neurosci. 1992; 15:86–92. https://

doi.org/10.1016/0166-2236(92)90017-3 PMID: 1373923

17. Gjorgjieva J, Sompolinsky H, Meister M. Benefits of pathway splitting in sensory coding. J Neurosci.

2014; 34:12127–12144. https://doi.org/10.1523/JNEUROSCI.1032-14.2014 PMID: 25186757

18. Kastner DB, Baccus SA, Sharpee TO. Critical and maximally informative encoding between neural pop-

ulations in the retina. Proc Natl Acad Sci USA. 2015; 112:2533–2538. https://doi.org/10.1073/pnas.

1418092112 PMID: 25675497

19. Brinkman BAW, Weber AI, Rieke F, Shea-Brown E. How do efficient coding strategies depend on ori-

gins of noise in neural circuits. PLoS Comp Biol. 2016; 12:e1005150. https://doi.org/10.1371/journal.

pcbi.1005150

20. Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V. Retina is structured to process an

excess of darkness in natural scenes. Proc Natl Sci USA. 2010; 107:17368–17373. https://doi.org/10.

1073/pnas.1005846107

Functional diversity among sensory neurons from efficient coding principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007476 November 14, 2019 35 / 38

https://doi.org/10.1162/neco.1990.2.3.308
https://doi.org/10.1515/znc-1981-9-1040
https://doi.org/10.1007/BF00188924
https://doi.org/10.1038/nature04485
https://doi.org/10.1038/nature04485
http://www.ncbi.nlm.nih.gov/pubmed/16495999
https://doi.org/10.1146/annurev.neuro.24.1.1193
http://www.ncbi.nlm.nih.gov/pubmed/11520932
https://doi.org/10.1152/jn.1953.16.1.37
http://www.ncbi.nlm.nih.gov/pubmed/13035466
https://doi.org/10.1038/nature09545
http://www.ncbi.nlm.nih.gov/pubmed/21068841
https://doi.org/10.1016/j.cell.2011.01.028
http://www.ncbi.nlm.nih.gov/pubmed/21335241
https://doi.org/10.1038/nature06292
https://doi.org/10.1038/nature06292
http://www.ncbi.nlm.nih.gov/pubmed/17972877
https://doi.org/10.1016/j.conb.2009.07.008
http://www.ncbi.nlm.nih.gov/pubmed/19683913
https://doi.org/10.1152/jn.1990.63.2.319
https://doi.org/10.1152/jn.1990.63.2.319
http://www.ncbi.nlm.nih.gov/pubmed/2313348
https://doi.org/10.1038/nn.2906
http://www.ncbi.nlm.nih.gov/pubmed/21909086
https://doi.org/10.1007/s00360-008-0289-1
http://www.ncbi.nlm.nih.gov/pubmed/18597095
https://doi.org/10.1016/0166-2236(92)90017-3
https://doi.org/10.1016/0166-2236(92)90017-3
http://www.ncbi.nlm.nih.gov/pubmed/1373923
https://doi.org/10.1523/JNEUROSCI.1032-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25186757
https://doi.org/10.1073/pnas.1418092112
https://doi.org/10.1073/pnas.1418092112
http://www.ncbi.nlm.nih.gov/pubmed/25675497
https://doi.org/10.1371/journal.pcbi.1005150
https://doi.org/10.1371/journal.pcbi.1005150
https://doi.org/10.1073/pnas.1005846107
https://doi.org/10.1073/pnas.1005846107
https://doi.org/10.1371/journal.pcbi.1007476


21. Doi E, J LG, Field GD, Shlens J, Sher A, Greschner M, et al. Efficient coding of spatial information in the

primate retina. J Neurosci. 2012; 32:16256–16264. https://doi.org/10.1523/JNEUROSCI.4036-12.2012

PMID: 23152609

22. Seung HS, Sompolinsky H. Simple models for reading neuronal population codes. Proc Natl Acad Sci

USA. 1993; 90:10749–10753. https://doi.org/10.1073/pnas.90.22.10749 PMID: 8248166

23. Bell AJ, Sejnowski TJ. The “Independent Components” of natural scenes are edge filters. Vision Res.

1997; 37:3327–3338. https://doi.org/10.1016/s0042-6989(97)00121-1

24. Brunel N, Nadal JP. Mutual information, Fisher information, and population coding. Neural Comput.

1998; 10:1731–1757. https://doi.org/10.1162/089976698300017115 PMID: 9744895

25. Wang Z, Stocker AA, Lee DD. Efficient neural codes that minimize Lp reconstruction error. Neural Com-

put. 2016; 28:2656–2686. https://doi.org/10.1162/NECO_a_00900 PMID: 27764595

26. Warland DK, Reinagel P, Meister M. Decoding visual information from a population of retinal ganglion

cells. J Neurophysiol. 1997; 78:2336–2350. https://doi.org/10.1152/jn.1997.78.5.2336 PMID: 9356386

27. Bethge M, Rotermund D, Pawelzik K. Optimal neural rate coding leads to bimodal firing rate distribu-

tions. Network: Comput Neur Syst. 2003; 14:303–319. https://doi.org/10.1088/0954-898X_14_2_307

28. Pitkow X, Meister M. Decorrelation and efficient coding by retinal ganglion cells. Nat Neurosci. 2012;

15:628–635. https://doi.org/10.1038/nn.3064 PMID: 22406548

29. Rieke F, Warland D, de Ruyter van Steveninck RR, Bialek W. Spikes: Exploring the neural code. Cam-

bridge, MA: MIT Press; 1997.

30. Bialek W, de Ruyter van Steveninck RR, Warland D. Reading a neural code. Science. 1991; 252:1854–

1857.

31. Lumpkin EA, Caterina MJ. Mechanisms of sensory transduction in the skin. Nature. 2007; 445:858–

865. https://doi.org/10.1038/nature05662 PMID: 17314972

32. Dhaka A, Viswanath V, Patapoutian A. TRP ion channels and temperature sensation. Annu Rev Neu-

rosci. 2006; 29:135–161. https://doi.org/10.1146/annurev.neuro.29.051605.112958 PMID: 16776582

33. Romo R, Brody CD, Hernández A, Lemus L. Neuronal correlates of parametric working memory in the

prefrontal cortex. Nature. 1998; 399:470–473. https://doi.org/10.1038/20939

34. Salinas E, Hernández A, Zainos A, Romo R. Periodicity and firing rate as candidate neural codes for the

frequency of vibrotactile stimuli. J Neurosci. 2000; 20:5503–5515. https://doi.org/10.1523/

JNEUROSCI.20-14-05503.2000 PMID: 10884334

35. Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell. 2006; 125:143–160. https://doi.

org/10.1016/j.cell.2006.01.050 PMID: 16615896

36. Stevens CF. A statistical property of fly odor responses is conserved across odors. Proc Natl Acad Sci.

2016; 113:6737–6742. https://doi.org/10.1073/pnas.1606339113 PMID: 27247407

37. Si G, Kanwal JK, Hu Y, Tabone CJ, Baron J, Berck M, et al. Invariances in a combinatorial olfactory

receptor code. Neuron. 2019; 101:950–962.e7. https://doi.org/10.1016/j.neuron.2018.12.030

38. Uzzell VJ, Chichilnisky EJ. Precision of spike trains in primate retinal ganglion cells. J Neurophysiol.

2004; 92:780–789. https://doi.org/10.1152/jn.01171.2003 PMID: 15277596

39. Sharpee TO. Optimizing neural information capacity through discretization. Neuron. 2017; 94:954–960.

https://doi.org/10.1016/j.neuron.2017.04.044 PMID: 28595051

40. Balasubramanian V, Kimber D, B MJ, II. Metabolically efficient information processing. Neural Comput.

2001; 13:799–815. https://doi.org/10.1162/089976601300014358 PMID: 11255570

41. Stein RB. The information capacity of nerve cells using a frequency code. Biophys J. 1967; 7:797–826.

https://doi.org/10.1016/S0006-3495(67)86623-2 PMID: 19210999

42. Shamai S. Capacity of a pulse amplitude modulated direct detection photon channel. IEE Proc Commun

Speech Vis. 1990; 137:424–430. https://doi.org/10.1049/ip-i-2.1990.0056

43. Nikitin AP, Stocks NG, McDonnell MD. Neural population coding is optimized by discrete tuning curves.

Phys Rev Lett. 2009; 103:138101. https://doi.org/10.1103/PhysRevLett.103.138101 PMID: 19905542

44. Sachs MB, Abbas PJ. Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J

Acoust Soc Am. 1974; 56:1835–1847. https://doi.org/10.1121/1.1903521 PMID: 4443483

45. Lewen GD, Bialek W, de Ruyter van Steveninck RR. Neural coding of naturalistic motion stimuli. Net-

work: Comput Neural Syst. 2001; 12:317–329. https://doi.org/10.1080/net.12.3.317.329

46. Strong SP, de Ruyter van Steveninck RR, Bialek W, Koberle R. On the application of information theory

to neural spike trains. Pac Symp Biocomput. 1998; 1998:621–632.

47. Nadal JP, Parga N. Nonlinear neurons in the low noise limit: a factorial code maximizes information

transfer. Network: Comput Neural Syst. 1994; 5:565–581. https://doi.org/10.1088/0954-898X_5_4_008

Functional diversity among sensory neurons from efficient coding principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007476 November 14, 2019 36 / 38

https://doi.org/10.1523/JNEUROSCI.4036-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23152609
https://doi.org/10.1073/pnas.90.22.10749
http://www.ncbi.nlm.nih.gov/pubmed/8248166
https://doi.org/10.1016/s0042-6989(97)00121-1
https://doi.org/10.1162/089976698300017115
http://www.ncbi.nlm.nih.gov/pubmed/9744895
https://doi.org/10.1162/NECO_a_00900
http://www.ncbi.nlm.nih.gov/pubmed/27764595
https://doi.org/10.1152/jn.1997.78.5.2336
http://www.ncbi.nlm.nih.gov/pubmed/9356386
https://doi.org/10.1088/0954-898X_14_2_307
https://doi.org/10.1038/nn.3064
http://www.ncbi.nlm.nih.gov/pubmed/22406548
https://doi.org/10.1038/nature05662
http://www.ncbi.nlm.nih.gov/pubmed/17314972
https://doi.org/10.1146/annurev.neuro.29.051605.112958
http://www.ncbi.nlm.nih.gov/pubmed/16776582
https://doi.org/10.1038/20939
https://doi.org/10.1523/JNEUROSCI.20-14-05503.2000
https://doi.org/10.1523/JNEUROSCI.20-14-05503.2000
http://www.ncbi.nlm.nih.gov/pubmed/10884334
https://doi.org/10.1016/j.cell.2006.01.050
https://doi.org/10.1016/j.cell.2006.01.050
http://www.ncbi.nlm.nih.gov/pubmed/16615896
https://doi.org/10.1073/pnas.1606339113
http://www.ncbi.nlm.nih.gov/pubmed/27247407
https://doi.org/10.1016/j.neuron.2018.12.030
https://doi.org/10.1152/jn.01171.2003
http://www.ncbi.nlm.nih.gov/pubmed/15277596
https://doi.org/10.1016/j.neuron.2017.04.044
http://www.ncbi.nlm.nih.gov/pubmed/28595051
https://doi.org/10.1162/089976601300014358
http://www.ncbi.nlm.nih.gov/pubmed/11255570
https://doi.org/10.1016/S0006-3495(67)86623-2
http://www.ncbi.nlm.nih.gov/pubmed/19210999
https://doi.org/10.1049/ip-i-2.1990.0056
https://doi.org/10.1103/PhysRevLett.103.138101
http://www.ncbi.nlm.nih.gov/pubmed/19905542
https://doi.org/10.1121/1.1903521
http://www.ncbi.nlm.nih.gov/pubmed/4443483
https://doi.org/10.1080/net.12.3.317.329
https://doi.org/10.1088/0954-898X_5_4_008
https://doi.org/10.1371/journal.pcbi.1007476


48. Puchalla JL, Schneidman E, Harris RA, Berry MJ. Redundancy in the population code of the retina.

Neuron. 2005; 46:493–504. https://doi.org/10.1016/j.neuron.2005.03.026 PMID: 15882648

49. Tkacik G, Prentice JS, Balasubramanian V, Schneidman E. Optimal population coding by noisy spiking

neurons. Proc Natl Acad Sci USA. 2010; 107:14419–14424. https://doi.org/10.1073/pnas.1004906107

PMID: 20660781

50. Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR. Modular use of peripheral input chan-

nels tunes motion-detecting circuitry. Neuron. 2013; 79:111–127. https://doi.org/10.1016/j.neuron.

2013.04.029 PMID: 23849199

51. Bhattacharya MRC, Bautista DM, Wu K, Haeberle H, Lumpkin EA, et al. Radial stretch reveals distinct

populations of mechanosensitive mammalian somatosensory neurons. Proc Natlc Acad USA. 2008;

105:20015–20020. https://doi.org/10.1073/pnas.0810801105

52. Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modelling of neural

systems. Cambridge, Massachusetts, London, England: The MIT Press; 2001.

53. Panter PF, Dite W. Quantizing distortion in pulse-count modulation with nonuniform spacing of levels.

Proc IRE. 1951; 39:44–48. https://doi.org/10.1109/JRPROC.1951.230419

54. Gray RM, Neuhoff DL. Quantization. IEEE Trans Inf Theory. 1998; 44:2325–2383. https://doi.org/10.

1109/18.720541

55. Field DJ. What is the goal of sensory coding? Neural Comput. 1994; 6:559–601.

56. Ruderman DL. The statistics of natural images. Network: Comput Neural Syst. 1994; 5:517–548.

https://doi.org/10.1088/0954-898X_5_4_006

57. Dong DW, Atick JJ. Statistics of natural time-varying images. Network: Comput Neural Syst. 1995;

6:345–358. https://doi.org/10.1088/0954-898X_6_3_003

58. van Hateren JH. Processing of natural time series of intensities by the visual system of the blowfly.

Vision Res. 1997; 37:3407–3416. https://doi.org/10.1016/s0042-6989(97)00105-3 PMID: 9425553

59. Tadmor Y, Tolhurst DJ. Calculating the contrasts that retinal ganglion cells and LGN neurones encoun-

ter in natural scenes. Vision Res. 2000; 40:3145–3157. https://doi.org/10.1016/S0042-6989(00)

00166-8

60. Singh NC, Theunissen FE. Modulation spectra of natural sounds and ethological theories of auditory

processing. J Acoust Soc Am. 2003; 114:3394–3411. https://doi.org/10.1121/1.1624067 PMID:

14714819

61. Geisler WS. Visual perception and the statistical properties of natural scenes. Annu Rev Psychol. 2008;

59:167–192. https://doi.org/10.1146/annurev.psych.58.110405.085632 PMID: 17705683

62. Catrakis HJ, Dimotakis PE. Scale distributions and fractal dimensions in turbulence. Phys Rev Lett.

1996; 77:3795. https://doi.org/10.1103/PhysRevLett.77.3795 PMID: 10062310

63. Dekker T, Ibba I, Siju KP, Stensmyr MC, Hansson BS. Olfactory shifts parallel superspecialism for toxic

fruit in Drosophila melanogaster, sibling, D. sechellia. Curr Biol. 2006; 16:101–109. https://doi.org/10.

1016/j.cub.2005.11.075

64. Linz J, Baschwitz A, Strutz A, Dweck HKM, Sachse S, Hansson BS, et al. Host plant-driven sensory

specialization in Drosophila erecta. Proc Royal Soc B. 2013; 280:20130626. https://doi.org/10.1098/

rspb.2013.0626

65. Sanes JR, Masland RH. The types of retinal ganglion cells: current status and implications for neuronal

classification. Annu Rev Neurosci. 2015; 38:221–246. https://doi.org/10.1146/annurev-neuro-071714-

034120 PMID: 25897874

66. Baden T, Berens P, Franke K, Rosón R, Bethge M, Euler T. The functional diversity of retinal ganglion

cells in the mouse. Nature. 2016; 529:345–350. https://doi.org/10.1038/nature16468 PMID: 26735013

67. Tishby N, Pereira F, Bialek W. The information bottleneck method. In: Proceedings 37th Allerton Con-

ference on Communication, Control, and Computing; 1999. p. 368–377.

68. Palmer SE, Marre O, Berry MJ, Bialek W. Predictive information in a sensory population. Proc Natl

Acad Sci USA. 2015; 112:6908–6913. https://doi.org/10.1073/pnas.1506855112 PMID: 26038544

69. Mlynarski W, Hermundstad A. Adaptive coding for dynamic sensory inference. Elife. 2018; 7:e32055.

https://doi.org/10.7554/eLife.32055 PMID: 29988020

70. Oswald MJ, Tantirigama MLS, Sonntag I, Hughes SM, Empson RM. Diversity of layer 5 projection neu-

rons in the mouse motor cortex. Front Cell Neurosci. 2013; 7:174. https://doi.org/10.3389/fncel.2013.

00174 PMID: 24137110

71. Risner JR, Holt JR. Heterogeneous potassium conductances contribute to the diverse firing properties

of postnatal mouse vestibular ganglion neurons. J Neurophysiol. 2006; 96:2364–2376. https://doi.org/

10.1152/jn.00523.2006 PMID: 16855108

Functional diversity among sensory neurons from efficient coding principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007476 November 14, 2019 37 / 38

https://doi.org/10.1016/j.neuron.2005.03.026
http://www.ncbi.nlm.nih.gov/pubmed/15882648
https://doi.org/10.1073/pnas.1004906107
http://www.ncbi.nlm.nih.gov/pubmed/20660781
https://doi.org/10.1016/j.neuron.2013.04.029
https://doi.org/10.1016/j.neuron.2013.04.029
http://www.ncbi.nlm.nih.gov/pubmed/23849199
https://doi.org/10.1073/pnas.0810801105
https://doi.org/10.1109/JRPROC.1951.230419
https://doi.org/10.1109/18.720541
https://doi.org/10.1109/18.720541
https://doi.org/10.1088/0954-898X_5_4_006
https://doi.org/10.1088/0954-898X_6_3_003
https://doi.org/10.1016/s0042-6989(97)00105-3
http://www.ncbi.nlm.nih.gov/pubmed/9425553
https://doi.org/10.1016/S0042-6989(00)00166-8
https://doi.org/10.1016/S0042-6989(00)00166-8
https://doi.org/10.1121/1.1624067
http://www.ncbi.nlm.nih.gov/pubmed/14714819
https://doi.org/10.1146/annurev.psych.58.110405.085632
http://www.ncbi.nlm.nih.gov/pubmed/17705683
https://doi.org/10.1103/PhysRevLett.77.3795
http://www.ncbi.nlm.nih.gov/pubmed/10062310
https://doi.org/10.1016/j.cub.2005.11.075
https://doi.org/10.1016/j.cub.2005.11.075
https://doi.org/10.1098/rspb.2013.0626
https://doi.org/10.1098/rspb.2013.0626
https://doi.org/10.1146/annurev-neuro-071714-034120
https://doi.org/10.1146/annurev-neuro-071714-034120
http://www.ncbi.nlm.nih.gov/pubmed/25897874
https://doi.org/10.1038/nature16468
http://www.ncbi.nlm.nih.gov/pubmed/26735013
https://doi.org/10.1073/pnas.1506855112
http://www.ncbi.nlm.nih.gov/pubmed/26038544
https://doi.org/10.7554/eLife.32055
http://www.ncbi.nlm.nih.gov/pubmed/29988020
https://doi.org/10.3389/fncel.2013.00174
https://doi.org/10.3389/fncel.2013.00174
http://www.ncbi.nlm.nih.gov/pubmed/24137110
https://doi.org/10.1152/jn.00523.2006
https://doi.org/10.1152/jn.00523.2006
http://www.ncbi.nlm.nih.gov/pubmed/16855108
https://doi.org/10.1371/journal.pcbi.1007476


72. Tan J, Savigner A, Ma M, Luo M. Odor information processing by the olfactory bulb analyzed in gene-

targeted mice. Neuron. 2010; 65:912–926. https://doi.org/10.1016/j.neuron.2010.02.011 PMID:

20346765

73. Tichy H, Hinterwirth A, Gingl E. Olfactory receptors on the cockroach antenna signal odour ON and

odour OFF by excitation. Eur J Neurosci. 2005; 22:3147–3160. https://doi.org/10.1111/j.1460-9568.

2005.04501.x PMID: 16367781

74. Park IM, Pillow J. Bayesian Efficient Coding. BioRxiv. 2017; http://dx.doi.org/10.1101/178418.

75. Attneave F. Some informational aspects of visual perception. Psychol Rev. 1954; 61:183–193. https://

doi.org/10.1037/h0054663 PMID: 13167245

76. Atick JJ, Redlich AN. Convergent Algorithm for Sensory Receptive Field Development. Neural Comput.

1993; 5:45–60. https://doi.org/10.1162/neco.1993.5.1.45

77. Roska B, Meister M. The Retina Dissects the Visual Scene into Distinct Features. In: In: The New Visual

Neurosciences. Cambridge, MA: The MIT Press; 2014. p. 163–182.

78. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, et al. Spatio-temporal correlations

and visual signalling in a complete neuronal population. Nature. 2008; 454:995–999. https://doi.org/10.

1038/nature07140 PMID: 18650810

79. Nadal JP, Brunel N. Nonlinear feedforward networks with stochastic output: infomax implies redun-

dancy reduction. Network: Comput Neural Syst. 1998; p. 207–217. https://doi.org/10.1088/0954-898X_

9_2_004

80. Tkacik G, Walczak AM, Bialek W. Optimizing information flow in small genetic networks. Phys Rev E.

2009; 80:031920. https://doi.org/10.1103/PhysRevE.80.031920

81. Ganguli D, Simoncelli EP. Efficient sensory encoding and Bayesian inference with heterogeneous neu-

ral populations. Neural Comput. 2014; 26:2103–2134. https://doi.org/10.1162/NECO_a_00638 PMID:

25058702

82. Karklin Y, Simoncelli EP. Efficient coding of natural images with a populations of noisy Linear-Nonlinear

neurons. In: Shawe-Taylor J, Zemel RS, Bartlett P, Pereira F, Weinberger KQ, editors. Adv Neural Inf

Proc Syst 24. Cambridge, MA: MIT Press; 2011. p. 999–1007.

83. Pouget A, Deneve S, Ducom JC, Latham PE. Narrow versus wide tuning curves: What’s best for a pop-

ulation code? Neural Comput. 1999; 11:85–90. https://doi.org/10.1162/089976699300016818

Functional diversity among sensory neurons from efficient coding principles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007476 November 14, 2019 38 / 38

https://doi.org/10.1016/j.neuron.2010.02.011
http://www.ncbi.nlm.nih.gov/pubmed/20346765
https://doi.org/10.1111/j.1460-9568.2005.04501.x
https://doi.org/10.1111/j.1460-9568.2005.04501.x
http://www.ncbi.nlm.nih.gov/pubmed/16367781
http://dx.doi.org/10.1101/178418
https://doi.org/10.1037/h0054663
https://doi.org/10.1037/h0054663
http://www.ncbi.nlm.nih.gov/pubmed/13167245
https://doi.org/10.1162/neco.1993.5.1.45
https://doi.org/10.1038/nature07140
https://doi.org/10.1038/nature07140
http://www.ncbi.nlm.nih.gov/pubmed/18650810
https://doi.org/10.1088/0954-898X_9_2_004
https://doi.org/10.1088/0954-898X_9_2_004
https://doi.org/10.1103/PhysRevE.80.031920
https://doi.org/10.1162/NECO_a_00638
http://www.ncbi.nlm.nih.gov/pubmed/25058702
https://doi.org/10.1162/089976699300016818
https://doi.org/10.1371/journal.pcbi.1007476

